\(a^2+b^2+ab\) chia hết cho 10 . Chứng minh rằng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

xét số dư của a, b khi chia cho 5 là: 0,1,2,3,4.
ta ghép cặp dần (0,0) (0,1),(0,2)...(3,4) thì chỉ có cặp (0,0) mới đảm bảo \(a^2+b^2+ab\)mới chia hết cho 5.
vậy a, b sẽ có tận cùng là 0 hoặc 5.
nếu a,b có cùng có chữ số tận cùng là 5 loại vì: \(a^2+b^2+ab\)là số lẻ không chia hết cho 2.
nếu a có  chữ số tận cùng bằng 5, b chữ số có tận cùng bằng 0 thì \(a^2+b^2+ab\)là số lẻ nên không chia hết cho 2. (loại vì \(a^2+b^2+ab\)chia hết cho 10).
a, b có chữu số tận cùng bằng 0 khi đó \(a^2+b^2+ab\)là số chẵn nên chia hết cho 2(thỏa mãn).
do a, b có chữ số tận cùng bằng 0 nên \(a^2,b^2,ab\)sẽ có tận cùng là 100 nên \(a^2+b^2+ab\)chia hết cho 100.

8 tháng 8 2016

\(a^2+b^2+ab\) chia hết cho 10

=> \(a^2+b^2+ab\) chia hết cho 2 và 5

\(a^2+b^2+ab=\left(a^2+b^2+2ab\right)-ab\)

\(=\left(a+b\right)^2-ab\)

Vì \(\left(a+b\right)^2;ab\) chia hết cho 2

=> \(\left(a+b\right)^2;ab\) cùng chẵn hoặc cùng lẻ

(+) Nếu \(\left(a+b\right)^2;ab\) (1)

=> a và b cùng lẻ

=> a+b chẵn ( mâu thuẫn với (1) )

=> a và b cùng là số chẵn

Để \(=\left(a+b\right)^2-ab\) chia hết cho 5 thì (a+b)^2 và ab có cúng số dư khi chia cho 10

Mình chỉ biết đến đó

Mà cũng ko chắc là đúng

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

16 tháng 1 2019

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

16 tháng 1 2019

Câu 2 làm hoi dài nên lười

12 tháng 12 2016

\(2a^2+3ab+2b^2=2\left(a-b\right)^2+7ab....\) chia hết cho 7=> a-b chia hết cho 7 

=> (a-b)(a+b) chia hết cho 7 hay a2-b2 chia hết cho 7.

27 tháng 8 2022

sao từ a-b chia hết cho 7 lại suy r dc (a-b)(a+b) cũng thế v bn

NV
8 tháng 12 2018

\(ab\left(a^2-b^2\right)=a^3b-ab^3=a^3b-ab+ab-ab^3\)

\(=ab\left(a^2-1\right)-ab\left(b^2-1\right)=b\left(a-1\right)a\left(a+1\right)+a\left(b-1\right)b\left(b+1\right)\)

Do \(\left\{{}\begin{matrix}\left(a-1\right)a\left(a+1\right)\\\left(b-1\right)b\left(b+1\right)\end{matrix}\right.\) đều là tích của 3 số nguyên liên tiếp nên chúng chia hết cho 3

\(\Rightarrow b\left(a-1\right)a\left(a+1\right)-a\left(b-1\right)b\left(b+1\right)\) chia hết cho 3

\(\Rightarrow ab\left(a^2-b^2\right)\) chia hết cho 3 với mọi a, b nguyên

8 tháng 12 2018

* Nếu a hoặc b chia hết cho 3\(\Rightarrow ab⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)

* Nếu a và b đều chia hết cho 3 \(\Rightarrow ab⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)

* Nếu a và b đều không chia hết cho 3 thì ta có a2 và b2 đều chia cho 3 dư 1

Đặt a2=3k+1

b2=3h+1

Suy ra \(a^2-b^2=3k+1-3h-1=3k-3h=3\left(k-h\right)⋮3\Rightarrow a^2-b^2⋮3\Rightarrow ab\left(a^2-b^2\right)⋮3\)

Vậy ab(a2-b2) chia hết cho 3 với mọi số nguyên a và b

26 tháng 12 2018

\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

Ta có: a+b và a-b (cùng chẵn)

Và: a;b có số dư cho 4 là: 1;3

+) a;b có cùng số dư khi đó:

a-b chia hết cho 4 và a+b chia hết cho 2

=> a^2-b^2 chia hết cho 8

+) a;b khác số dư khi đó:

a+b chia hết cho 4 và a-b chia hết cho 2

=> a^2-b^2 chia hết cho 8

Vậy với a,b lẻ thì: a2-b2 chia hết cho 8

26 tháng 12 2018

đặt a=2k+1(k nguyên)  

      b=2m+1(m nguyên)

suy ra a^2-b^2=(a-b)(a+b)=(2k-2m)(2k+2m+2)=4(k-m)(k+m+1)

 nếu k-m chẵn thì bài toán được chứng minh

nếu k-m lẻ suy ra k và m có 1 số chẵn 1 số lẻ suy ra k+m+1 chẵn

                                               bài toán được chứng minh

AH
Akai Haruma
Giáo viên
27 tháng 3 2018

Lời giải:

Điều kiện phải sửa lại là \(a,b,c\in\mathbb{Z}\) hoặc \(a,b,c\in\mathbb{Z}^+\) nhé.

Ta có:

\(a^2+b^2=c^2\)

\(\Leftrightarrow (a+b)^2-2ab=c^2\)

\(\Leftrightarrow 2ab=(a+b)^2-c^2=(a+b-c)(a+b+c)(*)\)

Ta thấy \(a+b+c-(a+b-c)=2c\) nên \(a+b-c,a+b+c\) cùng tính chẵn lẻ.

+) Nếu \(a+b-c,a+b+c\) lẻ:

Từ \((*)\Rightarrow 2ab\vdots a+b+c\), mà \((a+b+c,2)=1\Rightarrow ab\vdots a+b+c\)

+) Nếu \(a+b-c,a+b+c\) chẵn.

Đặt \(a+b-c=2k(k\in\mathbb{Z})\Rightarrow 2ab=2k(a+b+c)\)

\(\Leftrightarrow ab=k(a+b+c)\Rightarrow ab\vdots a+b+c\)

Từ 2 TH trên suy ra \(ab\vdots a+b+c\)

27 tháng 3 2018

a,b,c là số nguyên dương cảm ơn bạn

18 tháng 8 2017

Cho \(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)

a, Rút gọn Q

B, Chứng minh Q=\(\frac{b+81}{b-81}\)thì \(\frac{b}{a}\)là một số nguyên chia hết cho 3

\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}\)

\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{a}\left(\sqrt{b}+2\right)-3\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)}\)

\(Q=\frac{2\sqrt{a}+3\sqrt{b}}{\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}-\frac{6-\sqrt{ab}}{\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{\left(2\sqrt{a}+3\sqrt{b}\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}-\frac{\left(\sqrt{a}-3\right)\left(6-\sqrt{ab}\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{\left(2\sqrt{a}+3\sqrt{b}\right)\left(\sqrt{a}+3\right)-\left(\sqrt{a}-3\right)\left(6-\sqrt{ab}\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{2a+6\sqrt{a}+3\sqrt{ab}+9\sqrt{b}-6\sqrt{a}+a\sqrt{b}+18-3\sqrt{ab}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{2a+9\sqrt{b}+a\sqrt{b}+18}{\left(a-9\right)\left(\sqrt{b}+2\right)}\)

\(Q=\frac{\left(a+9\right)\left(\sqrt{b}+2\right)}{\left(a-9\right)\left(\sqrt{b}+2\right)}=\frac{a+9}{a-9}\)

19 tháng 8 2017

Bạn giúp mình làm phần b với :<