Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x-2y+3\Rightarrow x=A+2y-3\)
\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)
\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)
\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)
\(\Leftrightarrow-7A^2+42A-31\ge0\)
\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)
1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)
Do \(x+y=1\)nên \(A=1-2xy\)
Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).
ta có:
\(x+2y=3\Leftrightarrow x=3-2y\)
thay vào P, ta có:
\(P=\left(3-2y\right)^2+5y^2\)
\(P=\left(3y-2\right)^2+5\)
\(\Rightarrow P\ge5\)(dấu xảy ra dấu "="\(\Leftrightarrow x=y=\frac{2}{3}\))
\(\Rightarrow x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(\Rightarrow1\ge2xy\)
\(\Rightarrow\frac{1}{2}\ge xy\)
Có \(x+y\ge2\sqrt{xy}\ge2\sqrt{\frac{1}{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Vậy \(Min_{x+y}=\sqrt{2}\)
Làm tương tự với max
Thêm đk: x,y>0
Tìm max:
Áp dụng BĐT bunhiacopxki ta có:
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\sqrt{2}\ge x+y\)
Dấu " = " xảy ra <=> x=y
KL:...............................
Áp dụng BĐT Cauchy=Schwarz ta có:
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le\sqrt{3}\)
Ta lại có:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow A\le\sqrt{3}+1\)
Dấu '=' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Em làm lại,cách này mà còn sai nữa thì em xin hàng ạ! Dù sao đi nữa cũng xin mọi người chịu khó góp ý giúp em để em càng ngày càng tiến bộ hơn nữa ạ! Thanks all !
*Tìm min
Đặt p = x + y + z; q = xy + yz + zx thì \(x^2+y^2+z^2=p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)
Suy ra \(A=p+q=p+\frac{p^2-1}{2}=\frac{p^2+2p-1}{2}\)
\(=\frac{p^2+2p+1-2}{2}=\frac{\left(p+1\right)^2-2}{2}\ge-\frac{2}{2}=-1\)
Vậy giá trị nhỏ nhất của A là -1.
Dấu "=" xảy ra khi (x;y;z) = (0;0;-1) (chỗ này em không biết giải rõ thế nào nữa :v)
*Tìm max
Ta có BĐT sau: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\le x^2+y^2+z^2\)
Suy ra \(q\le\frac{p^2}{3}\le p^2-2q=1\) suy ra \(\hept{\begin{cases}q\le p^2-2q=1\\p^2\le3\left(p^2-2q\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}q\le1\\p\le\sqrt{3\left(p^2-2q\right)}=\sqrt{3}\end{cases}}\)
Suy ra \(A=p+q\le\sqrt{3}+1\)
Ta có : \(2xy\le x^2+y^2=8\Rightarrow xy\le4\)
\(\Rightarrow x^2+y^2+2xy\le16\Leftrightarrow\left(x+y\right)^2\le4^2\Rightarrow-4\le x+y\le4\)
Vậy Max x+y là 4 khi x=y=2
Min x+y là -4 khi x=y=-2