Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cô-si cho 2 số dương \(\frac{x}{2};\frac{8}{y}\) ta có:
\(\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}\frac{8}{y}}=4\sqrt{\frac{x}{y}}\)
\(\Leftrightarrow2\ge4\sqrt{\frac{x}{y}}\Leftrightarrow0< \sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow0< \frac{x}{y}\le\frac{1}{4}\)
Đặt \(\frac{x}{y}=t\left(0< t\le\frac{1}{4}\right)\Rightarrow-t\ge\frac{-1}{4}\)
Ta có: \(K=t+\frac{2}{t}=32t+\frac{2}{t}-31t\ge2\sqrt{32t.\frac{2}{t}}-31t\ge16-\frac{31}{4}=\frac{33}{4}\)
Dấu '=' xảy ra <=> \(t=\frac{1}{4}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\)
Vậy GTNN của K là \(\frac{33}{4}\) tại x=2;y=8
\(2\ge\frac{x}{2}+\frac{8}{y}\ge2\sqrt{\frac{x}{2}.\frac{8}{y}}=4\sqrt{\frac{x}{y}}\Leftrightarrow\sqrt{\frac{x}{y}}\le\frac{1}{2}\Leftrightarrow\frac{y}{x}\ge4\)
\(K=\frac{x}{y}+\frac{2y}{x}=\frac{x}{y}+\frac{y}{16x}+\frac{31y}{16x}\ge2\sqrt{\frac{x}{y}.\frac{y}{16x}}+\frac{31}{16}.4=\frac{33}{4}\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{8}\\\frac{x}{2}+\frac{y}{8}=2\\\frac{x}{y}=\frac{y}{16x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=8\end{cases}}\).
\(B=8x+\dfrac{6}{x}+18y+\dfrac{7}{y}=\left(8x+\dfrac{2}{x}\right)+\left(18y+\dfrac{2}{y}\right)+\left(\dfrac{4}{x}+\dfrac{5}{y}\right)\ge8+12+23=43\)
Dấu bằng xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{3}\right)\)
Vậy, \(MinB\) là \(43\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{3}\right)\)
<=>4(x+y)=5
ta có:
\(S+5=\frac{4}{x}+4x+\frac{1}{4y}+4y\ge2\sqrt{\frac{4}{x}.4x}+2\sqrt{\frac{1}{4y}.4y}=2.4+2=10\)
\(\Rightarrow S\ge5\)
Vậy Min S=5 khi x=1;y=1/4
Dự đoán điểm rơi tại x = y = 2/3 ta sẽ làm như sau
\(A=x+y+\frac{1}{x}+\frac{1}{y}\)
\(=\left(\frac{9x}{4}+\frac{1}{x}\right)+\left(\frac{9y}{4}+\frac{1}{y}\right)-\frac{5}{4}\left(x+y\right)\)
\(\ge2\sqrt{\frac{9x}{4x}}+2\sqrt{\frac{9y}{4y}}-\frac{5}{4}.\frac{4}{3}=\frac{13}{3}\)
Dấu "=" tại x = y = 2/3
Cách khác là UCT (không hay như cách kia đâu=)
Ta sẽ chứng minh: \(x+\frac{1}{x}\ge-\frac{5}{4}x+3\)
\(\Leftrightarrow\frac{\left(3x-2\right)^2}{4x}\ge0\) (đúng)
Thiết lập tương tự BĐT còn lại và cộng theo vế ta được: \(VT\ge-\frac{5}{4}\left(x+y\right)+6\ge-\frac{5}{4}.\frac{4}{3}+6=\frac{13}{3}\)
Dấu "=" xảy ra khi 3x - 2 = 3y - 2 = 0 tức là x = y = 2/3
Bạn ơi đề hình như là tìm GTLN
Xét x/x+1 < = x/x+x+y+z = x/(x+y)+(x+z)
Áp dụng bđt 1/a+b < = 1/4.(1/a + 1/b) với a,b > 0 thì
x/x+1 < = x/4.(1/x+y + 1/x+z) = 1/4.(x/x+y + x/x+z)
Tương tự : y/y+1 < = 1/4.(y/x+y + y/y+z) ; z/z+! < = 1/4.(z/z+x + z/y+z)
=> M < = 1/4.(x/x+y + y/x+y + y/y+z + z/y+z + z/x+z + x/z+x) = 1/4.(1+1+1) = 3/4
Dấu "=" xảy ra <=> x+y+z = 1 và x=y=z <=> x=y=z=1/3
Vậy GTLN của M = 3/4 <=> x=y=z=1/3
k mk nha
Lời giải
Dư đoán xảy ra cực trị tại \(x=y=\frac{1}{\sqrt{2}}\)
Ta biến đổi P như sau: \(P=\left(2x+\frac{1}{x}\right)+\left(2y+\frac{1}{y}\right)-\left(x+y\right)\)
\(\ge2\sqrt{2x.\frac{1}{x}}+2\sqrt{2y.\frac{1}{y}}-\left(x+y\right)\)\(=4\sqrt{2}-\left(x+y\right)\)
\(=4\sqrt{2}-\sqrt{2}\left(\sqrt{x^2.\frac{1}{2}}+\sqrt{y^2.\frac{1}{2}}\right)\)
\(\ge4\sqrt{2}-\sqrt{2}\left(\frac{x^2+y^2+1}{2}\right)=4\sqrt{2}-1\sqrt{2}=3\sqrt{2}\)
Vậy ...
min=43.
cho mk ý kiến nhé
\(B=\left(8x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(\frac{4}{x}+\frac{5}{y}\right)\ge2\sqrt{8x.\frac{2}{x}}+2\sqrt{18y.\frac{2}{y}}+23..\)
\(B\ge2.4+2.6+23=43\)
B min = 43 khi \(\hept{\begin{cases}8x=\frac{2}{x}\\18y=\frac{2}{y}\\\frac{4}{x}=\frac{5}{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}.}}\)