Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
+ Theo bđt Cauchy :
\(\sqrt{\left(a+b\right)\cdot\frac{2}{3}}\le\frac{a+b+\frac{2}{3}}{2}\) Dấu "=" \(\Leftrightarrow a+b=\frac{2}{3}\)
\(\sqrt{\left(b+c\right)\cdot\frac{2}{3}}\le\frac{b+c+\frac{2}{3}}{2}\) Dấu "=" \(\Leftrightarrow b+c=\frac{2}{3}\)
\(\sqrt{\left(c+a\right)\cdot\frac{2}{3}}\le\frac{c+a+\frac{2}{3}}{2}\) Dấu "=" \(\Leftrightarrow c+a=\frac{2}{3}\)
Do đó : \(\sqrt{\frac{2}{3}}Q\le\frac{2\left(a+b+c\right)+2}{2}=2\)
\(\Rightarrow Q\le\sqrt{6}\)
"=" \(\Leftrightarrow a=b=c=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{c+ab}\) =\(\sqrt{c\left(a+b+c\right)+ab}=\sqrt{c^2+ac+cb+ab}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\frac{ab}{\sqrt{c+ab}}\le\frac{ab}{2}\left(\frac{1}{c+a}+\frac{1}{b+c}\right)\)
ttu \(\frac{bc}{\sqrt{a+bc}}\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right);\frac{ac}{\sqrt{b+ca}}\le\frac{1}{2}\left(\frac{1}{b+a}+\frac{1}{a+c}\right)\)
\(\Rightarrow P\le\frac{bc+ac}{2\left(a+b\right)}+\frac{ac+ab}{2\left(a+b\right)}+\frac{bc+ab}{2\left(c+b\right)}=\frac{1}{2}\left(a+b+c\right)=\frac{1}{2}\)
dau = xay ra khi a=b=c=1/3
![](https://rs.olm.vn/images/avt/0.png?1311)
Có bất đẳng thức xy+zt≥x+zy+txy+zt≥x+zy+t với x,z≥0x,z≥0 ,y,t>0y,t>0
Giả sử cc lớn nhất trong các số a,b,ca,b,c thì c≥13c≥13
Do a,b,c≥0a,b,c≥0 nên
Ta có P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1P2≥aa+1+bb+1+cc+1≥a+ba+b+2+cc+1
Mà a+ba+b+2+cc+1−12=1−c3−c+c−12(c+1)=(1−c)(3c−1)(3−c)(2c+2)≥0