Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sol của tớ :3
Nếu y=0 thì x2=1 => P=2
Nếu y\(\ne\)0 .Đặt \(t=\frac{x}{y}\)
\(P=\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}=\frac{2\left(x^2+6xy\right)}{x^2+2xy+3y^2}=\frac{2\left[\left(\frac{x}{y}\right)^2+6\cdot\frac{x}{y}\right]}{\left(\frac{x}{y}\right)^2+2\frac{x}{y}+3}=\frac{2\left(t^2+6t\right)}{t^2+2t+3}\)
\(\Rightarrow P.t^2+2P\cdot t+3P=2t^2+12t\)
\(\Leftrightarrow t^2\left(P-2\right)+2t\left(P-6\right)+3P=0\)
Xét \(\Delta'=\left(P-2\right)^2-3P\left(P-6\right)=-2P^2-6P+36\ge0\)
\(\Leftrightarrow-6\le P\le3\)
Dấu bằng xảy ra khi:
Max:\(x=\frac{3}{\sqrt{10}};y=\frac{1}{\sqrt{10}}\left(h\right)x=\frac{3}{-\sqrt{10}};y=\frac{1}{-\sqrt{10}}\)
Min:\(x=\frac{3}{\sqrt{13}};y=-\frac{2}{\sqrt{13}}\left(h\right)x=-\frac{3}{\sqrt{13}};y=\frac{2}{\sqrt{13}}\)
M đạt giá trị lớn nhất <=> \(\frac{1}{M}\) đạt giá trị nhỏ nhất
Do đó, ta xét :
\(\frac{1}{M}=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\), (dấu "=" xảy ra khi a = b) , ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Lại có : \(x^2+y^2\ge2xy\Rightarrow\frac{2}{xy}\ge\frac{4}{x^2+y^2}=\frac{4}{4}=1\)
Suy ra \(\frac{1}{M}\ge\sqrt{2}+1\Rightarrow M\le\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Dấu đẳng thức xảy ra khi \(\begin{cases}x=y\\x^2+y^2=4\end{cases}\) \(\Leftrightarrow x=y=\sqrt{2}\)
Vậy Max M = \(\sqrt{2}-1\) tại \(x=y=\sqrt{2}\)
Cho x,y là hai số khác nhau thõa mãn x2+y=y2+x. Tính giá trị biểu thức P=\(\frac{x^2+y^2+xy}{xy-1}\)
x^2+y=y^2+x <=>(x-y)(x+y)=x-y <=>x+y=1=>(x+y)^2=1<=>x^2+y^2=1-xy
thay vào bt ta đc P= -1
Ta có (x+y)xy=x2+y2-xy
=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)
<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)
<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)
mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)
Vậy Max A =16 khi \(x=y=\frac{1}{2}\)