K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Chọn đáp án D.

nên kết hợp với các đẳng thức ở trên, ta được 

Tổng quát bài toán chúng ta có kết quả sau:

 trong đó m, n, p là độ dài ba cạnh của một tam giác thì 

23 tháng 12 2019

Chọn đáp án B.

6 tháng 11 2018

Đáp án B.

Số phức z 1 = 1  có điểm biểu diễn là A 1 ; 0  , số phức  z 2 = 2 − 3 i  có điểm biểu diễn là  B 2 ; − 3  

Gọi E x ; y  là điểm biểu diễn của số phức z, khi đó z = x + y i , x , y ∈ ℝ  

Suy ra 

P = x − 1 + y i + x − 2 + y + 3 i = x − 1 2 + y 2 + x − 2 2 + y + 3 2

⇒ P = E A + E B .   

Mặt khác

z − 1 − i + z − 3 + i = 2 2 ⇔ x − 1 + y − 1 i + x − 3 + y + 1 i = 2 2

  ⇔ x − 1 2 + y − 1 2 + x − 3 2 + y + 1 2 = 2 2 *  

 

Gọi M 1 ; 1 , N 3 ; − 1  thì E M + E N = 2 2 = M N ⇒  Điểm E thuộc đoạn MN.

Ta có phương trình đường thẳng MN là x + y + z − 2 = 0  với   x ∈ 1 ; 3

Bài toán trở thành:

Cho điểm E thuộc đoạn MN . Tìm giá trị lớn nhất của biểu thức P = E A + E B

Đặt  f ( x ) = x + y − 2.  Ta có

f 1 ; 0 = 1 + 0 − 2 = − 1 f 2 ; − 3 = 2 − 3 − 2 = − 3 ⇒ f 1 ; 0 . f 2 ; − 3 = 3 > 0  . Suy ra hai điểm A,B nằm cùng về một phía đối với MN . Gọi A' là điểm đối xứng với A qua MN thì A ' 2 ; 1 .Khi đó

P = E A + E B = E A ' + E B ≥ A ' B = 4 .

Dấu = xảy ra khi và chỉ khi

E ∈ A ' B ⇒ E = A ' B ∩ M N ⇒ E 2 ; 0  hay z = 2.

 

Do điểm E luôn thuộc đường thẳng MN nên P = E A + E B  đạt giá trị lớn nhất khi E ≡ M  hoặc E ≡ N .  

M A + M B = 1 + 17 N A + N B = 2 5 ⇒ M A + M B > N A + N B ⇒ max P = M A + M B = 1 + 17.  

Vậy

M = 1 + 7 , m = 4 ⇒ S = M + m = 5 + 17 .  

24 tháng 7 2018

13 tháng 1 2018

Chọn đáp án C.

15 tháng 4 2018

Đáp án C

15 tháng 8 2018

Chọn đáp án C

Gọi M 1 , M 2 , M  lần lượt là điểm biểu diễn của các số phức z 1 , 2 z 2 , z  trên mặt phẳng tọa độ Oxy.

Do z 1 - 3 - 4 i = 1  nên quỹ tích điểm M 1  là đường tròn C 1  có tâm I 1 3 ; 4  và bán kính R = 1 

Do  z 2 - 3 - 4 i = 1 2 ⇔ 2 z 2 - 6 - 8 i = 1  nên quỹ tích điểm  M 2  là đường tròn  C 2  có tâm  I 2 6 ; 8  và bán kính R = 2 

Ta có điểm M(a; b) thỏa mãn 3a - 2b = 12 nên quỹ tích điểm M là đường thẳng d: 3x - 2y - 12 = 0

Khi đó

Gọi C 3 là đường tròn đối xứng với đường tròn C 2  qua đường thẳng d.

Ta tìm được tâm của  C 3 là I 3 138 13 ;   64 13 và bán kính R = 1

 

Khi đó

với M 3 ∈ C 3  và A, B lần lượt là giao điểm của đường thẳng I 1 I 3 với hai đường tròn C 1 ,   C 3  (quan sát hình vẽ).

Dấu "=" xảy ra khi và chỉ khi M 1 ≡ A và  M 3 ≡ B

Vậy  P m i n = A B + 2 = I 1 I 3 = 3 1105 13

22 tháng 11 2018

Đáp án A.

Phương pháp:

Từ  z = z ¯ + 4 - 3 i  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB

Cách giải: Gọi z = x + ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.

Ta có:  dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  và A B → = 3 ; - 4

Phương trình đường trung trực của AB là

Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình

25 tháng 8 2019

Đáp án C

25 tháng 11 2018

Vì x > 0, y > 0 nên điểm biểu diễn số phức w có tọa độ là (-y;-x) (đều có hoành độ và tung độ âm). Đồng thời 

Suy ra điểm biểu diễn của số phức w nằm trong góc phần tư thứ III và cách gốc tọa độ O một khoảng bằng OA. Quan sát hình vẽ ta thấy có điểm P thỏa mãn. Chọn C.