Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A-B=\frac{a+b}{2}-\sqrt{ab}=\frac{a+b-2\sqrt{ab}}{2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}>0\)
Do đó: B < A và:
\(\frac{\left(a-b\right)^2}{8\left(A-B\right)}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{a}-\sqrt{b}\right)}{4\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
Mà: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}=\frac{a+b+2\sqrt{ab}}{4}=\frac{a+b}{4}+\frac{\sqrt{ab}}{2}=\frac{A+B}{2}\)
\(B< A\Rightarrow B< \frac{A+B}{2}< A\left(đpcm\right)\)
giải phương trình nghiệm nguyên :
\(\sqrt{x-2008}+\sqrt{y-2009}+\sqrt{z-2010}+3012=\frac{1}{2}\left(x+y+z\right)\)
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)
\(\Leftrightarrow\frac{a-2\sqrt{ab}+b}{2}\ge0\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\)
Dấu ''='' xảy ra khi a = b
Vì a ≥ 0 nên √a xác định, b ≥ 0 nên b xác định
Ta có: a - b 2 ≥ 0 ⇔ a - 2 a b + b ≥ 0
⇒ a + b ≥ 2 a b ⇔ a + b 2 ≥ a b
Dấu đẳng thức xảy ra khi a = b.
- Cách 1: (h.8)
Theo cách dựng, ΔABC có đường trung tuyến AO bằng một nửa cạnh BC, do đó ΔABC vuông tại D.
Vì vậy AH2 = BH.CH hay x2 = ab
Đây chính là hệ thức (2) hay cách vẽ trên là đúng.
- Cách 2: (h.9)
Theo cách dựng, ΔDEF có đường trung tuyến DO bằng một nửa cạnh EF, do đó ΔDEF vuông tại D.
Vậy DE2 = EI.EF hay x2 = a.b
Đây chính là hệ thức (1) hay cách vẽ trên là đúng.
- Cách 1: (h.8)
Theo cách dựng, ΔABC có đường trung tuyến AO bằng một nửa cạnh BC, do đó ΔABC vuông tại D.
Vì vậy AH2 = BH.CH hay x2 = ab
Đây chính là hệ thức (2) hay cách vẽ trên là đúng.
- Cách 2: (h.9)
Theo cách dựng, ΔDEF có đường trung tuyến DO bằng một nửa cạnh EF, do đó ΔDEF vuông tại D.
Vậy DE2 = EI.EF hay x2 = a.b
Đây chính là hệ thức (1) hay cách vẽ trên là đúng.
Ta cần c/m: \(\dfrac{a+b}{2}\ge\sqrt{ab}\left(1\right)\) (a;b ≥ 0)
Thật vậy:
\(\left(1\right)\Leftrightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\\ \Leftrightarrow\dfrac{a^2+2ab+b^2}{4}\ge ab\\ \Leftrightarrow a^2+2ab+b^2\ge4ab\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(\text{luôn đúng }\forall a;b\ge0\right)\)
Vậy BĐT Cô-si cho 2 số không âm được c/m.