\(\dfrac{1}{x^2+xy+y^2}\) +
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

2) \(\sum\dfrac{x}{x^2-yz+2013}=\sum\dfrac{x^2}{x^3-xyz+2013x}\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\dfrac{1}{x+y+z}\left(đpcm\right)\)

5 tháng 12 2018

Còn câu 1 nữa ạ, ai giải giúp em vớii

26 tháng 3 2017

Bài 5: Đặt \(t=\dfrac{\left(x+y+1\right)^2}{xy+x+y}\)

Ta đã biết bđt quen thuộc là \(x^2+y^2+1\ge xy+x+y\)

Vậy nên ta sẽ chứng minh \(t\geq 3\)

Thật vậy: \(t\geq 3\Leftrightarrow 2(x+y+1)^2\geq 6(x+y+xy)\)

\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2\geq 0\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Ta có: \(A=\dfrac{8t}{9}+\left(\dfrac{t}{9}+\dfrac{1}{t}\right)\geq \dfrac{24}{9}+\dfrac{2}{3}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(t=3\Leftrightarrow x=y=1\)

25 tháng 3 2017

3)

x^2 = 2x + \(\sqrt{2x-1}\) \(\Rightarrow\) x^2 = ( 2x -1 ) + \(\sqrt{2x-1}\) +1

\(\Rightarrow\) x^2 = (\(\sqrt{2x-1}\) + 1)^2 chuyển vế rồi phân tích thành nhân tử là ok

3 tháng 5 2017

ta có : \(\left(x+y-1\right)^2=xy\Leftrightarrow x^2+y^2+xy-2x-2y+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+xy-1=0\)

\(0=\left(x-1\right)^2+\left(y-1\right)^2+xy-1\ge xy-1\)

\(\Leftrightarrow xy\le1\)

\(xy=\left(x+y-1\right)^2\le1\Leftrightarrow-1\le x+y-1\le1\)

\(\Leftrightarrow0\le x+y\le2\).

\(VT=\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)

Áp dụng bất đẳng thức cauchy dạng phân thức:

\(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{4}=1\)(*)

\(xy\le1\)nên \(\sqrt{xy}\ge xy\)( đúng vì nó tương đương \(\sqrt{xy}\left(1-\sqrt{xy}\right)\ge0\))

\(\Rightarrow\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\ge\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\)( vì \(x+y\le2\))

Áp dụng bất đẳng thức cauchy: \(\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\ge2\sqrt{\dfrac{1}{2\sqrt{xy}}.\dfrac{\sqrt{xy}}{2}}=1\)(**)

từ (*) và (**) ta có \(VT\ge1+1=2\)

đẳng thức xảy ra khi x=y=1

3 tháng 5 2017

hay qé tks nhìu

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

Ta có: \(P=\frac{1}{x^2+xy+y^2}+4xy+\frac{1}{xy}=\frac{1}{x^2+xy+y^2}+\frac{1}{3xy}+4xy+\frac{1}{4xy}+\frac{5}{12xy}\)

Áp dụng BĐT AM-GM: \(1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)

\(4xy+\frac{1}{4xy}\geq 2\sqrt{4xy.\frac{1}{4xy}}=2(1)\)

\(\frac{5}{12xy}\geq \frac{5}{12.\frac{1}{4}}=\frac{5}{3}(2)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+xy+y^2}+\frac{1}{3xy}\geq \frac{4}{x^2+xy+y^2+3xy}=\frac{4}{(x+y)^2+2xy}=\frac{4}{1+2xy}\geq \frac{4}{1+2.\frac{1}{4}}=\frac{8}{3}(3)\)

Từ \((1);(2);(3)\Rightarrow P\geq \frac{8}{3}+2+\frac{5}{3}=\frac{19}{3}\)

Vậy \(P_{\min}=\frac{19}{3}\Leftrightarrow x=y=\frac{1}{2}\)

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

21 tháng 5 2017

from giả thiết => x+y+z=xyz

biến đổi như sau:\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}=\dfrac{x}{\sqrt{yz+x^2yz}}=\dfrac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

=\(\sqrt{\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)\)

21 tháng 5 2017

shit , có vậy mak t nhìn cũng ko ra ~