Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bất đẳng Bunyakovsky dạng cộng mẫu ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\)
\(=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)
(Cauchy 3 số) Dấu "=" xảy ra khi: a = b = c
2) Áp dụng kết quả phần 1 ta có:
\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}\ge\frac{\left(a^3+b^2+c^3\right)^2}{3\cdot\frac{1}{3}}=\left(a^3+b^3+c^3\right)^2\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{\sqrt[3]{3}}\)
Với a,b > = 0 và a + b = a2b2
Ta có:
\(VT=\sqrt{a+b+4\sqrt{a+b+2ab+1}}=\sqrt{a^2b^2+4\sqrt{a^2b^2+2ab+1}}\)
\(=\sqrt{a^2b^2+4\sqrt{\left(ab+1\right)^2}}=\sqrt{a^2b^2+4\left(ab+1\right)}\)
\(=\sqrt{a^2b^2+4ab+4}=\sqrt{\left(ab+2\right)^2}=ab+2=VP\)
=> đpcm
\(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4a^2b}{4b^2+1}\)
\(\ge a-\dfrac{4ab^2}{4b}+b-\dfrac{4a^2b}{4a}\) (bđt Cô-si)
=a-ab+b-ab=a+b-2ab=4ab-2ab=2ab
Lại có a+b=4ab \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
Dấu ''='' xảy ra khi \(a=b=\dfrac{1}{2}\)
\(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
\(\Leftrightarrow a-\dfrac{a}{4b^2+1}+b-\dfrac{b}{4a^2+1}\le a+b-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{4ab^2}{4b^2+1}+\dfrac{4ba^2}{4a^2+1}\le4ab-\dfrac{1}{2}\)
\(\sum\dfrac{4ab^2}{4b^2+1}\le^{CS}2ab\)
\(\Rightarrow CM:2ab\le4ab-\dfrac{1}{2}\Leftrightarrow ab\ge\dfrac{1}{4}\)
Từ GT \(\Rightarrow4ab=a+b\ge2\sqrt{ab}\Leftrightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow dpcm\)
Áp dụng BĐT cauchy-schwarz:
\(\sum\dfrac{a^4b}{2a+b}=\sum\dfrac{a^4b^2}{2ab+b^2}\ge\dfrac{\left(a^2b+b^2c+c^2a\right)^2}{\left(a+b+c\right)^2}\)
giờ ta chỉ cần có:\(a^2b+b^2c+c^2a\ge a+b+c\)
Áp dụng AM-GM:
\(a^2b+\dfrac{1}{b}\ge2a\)..tương tự ,ta suy ra:
\(a^2b+b^2c+c^2a\ge2\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)(*)
Theo giả thiết: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)
Dễ dàng suy ra được \(a+b+c\ge3\) ( từ BĐT \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\))
theo đó thì \(a+b+c\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Nên từ (*) ta có đpcm.
Dấu = xảy ra khi a=b=c=1
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
\(VT=3\left(\dfrac{1}{4ab}+\dfrac{1}{a^2+4b^2}\right)+\dfrac{1}{2.a.2b}\ge\dfrac{12}{a^2+4ab+4b^2}+\dfrac{2}{\left(a+2b\right)^2}=14\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{2};\dfrac{1}{4}\right)\)
anh ơi sao lại là \(\dfrac{2}{\left(a+2b\right)^2}\) ạ