Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Ta có :
\(A=\frac{5}{2m+1}\) và \(B=\frac{4}{2m-1}\) \(\left(ĐKXĐ:\ne\pm\frac{1}{2}\right)\)
a ) \(2A+3B=0\Rightarrow2.\frac{5}{2m+1}+3.\frac{4}{2m-1}=0\)
\(\Leftrightarrow\frac{10}{2m+1}+\frac{12}{2m-1}=0\Leftrightarrow\frac{10.\left(2m-1\right)}{\left(2m+1\right)\left(2m-1\right)}=0\)
\(\Leftrightarrow10\left(2m-1\right)+12\left(2m+1\right)=0\)
\(\Leftrightarrow20m-10+24m+12=0\)
\(\Leftrightarrow44m+2=0\)
\(\Leftrightarrow m=-\frac{1}{22}\left(t/m\right)\)
Vậy \(m=-\frac{1}{22}\) thì \(2A+3B=0\)
Chúc bạn học tốt !!!
Sai đề! Sửa: that 2c+b-a=2c+a-b
Đặt 2a+b-c=x, 2b+c-a=y, 2c+a-b=z
\(\Rightarrow8\left(a+b+c\right)^3=\left(x+y+z\right)^3=x^3+y^3+z^3\)và \(P=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có: \(\left(x+y+z\right)^3-x^3-y^3-z^3=0\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)-x^3-y^3=0\)
\(\Leftrightarrow3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)=0\Leftrightarrow3\left(x+y\right)\left(xy+xz+yz+z^2\right)=0\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\Leftrightarrow3P=0\Leftrightarrow P=0\)
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
A.
$a^2+4b^2+9c^2=2ab+6bc+3ac$
$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$
$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$
$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$
$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$
$\Rightarrow a-2b=a-3c=2b-3c=0$
$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$
B.
$x^2+2xy+6x+6y+2y^2+8=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$
$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$
$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)
$\Rightarrow -1\leq x+y+3\leq 1$
$\Rightarrow -4\leq x+y\leq -2$
$\Rightarrow 2020\leq x+y+2024\leq 2022$
$\Rightarrow A_{\min}=2020; A_{\max}=2022$
\(P=2a^3+2b^3+6ab-2024\)
\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+6ab-2024\)
\(=2\left[1-3ab\left(a+b\right)\right]+6ab-2024\)
\(=2-6ab+6ab-2024\)
=-2022
cái khúc dấu bằng thứ 2 và thứ 3, sao biến đổi mấy số trong ngoặc thành -6ab ạ