Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d ∈ ƯC(12n + 1, 30n + 2} (d ∈ N)
Ta có:
(12n + 1)⋮d và (30n + 2)⋮d
=> 5(12n + 1)⋮d và 2(30n + 2)⋮d
=> (60n + 5)⋮d và (60n + 4)⋮d
=> [(60n + 5) - (60n + 4)]⋮d
=> 1⋮d
=> d ∈ Ư(1)
=> d ∈ {1}
=> ƯC(12n + 1, 30n + 2) = {1}
=> ƯCLN(12n + 1, 30n + 2) = 1
Vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
Gọi ƯCLN(12n + 1;30n + 4) = d . Ta có :
12n + 1 ⋮ d => 5(12n + 1) = 60n + 5 ⋮ d
30n + 4 ⋮ d => 2(30n + 4) = 60n + 8 ⋮ d
=> (60n + 8) - (60n + 5) ⋮ d
=> 3 ⋮ d => d ∈ Ư(3) ∈ {1;3} ( Vì ƯCLN ko có số nguyên âm)
Mặt khác :12n + 1 không chia hết cho 3 (Vì 12n ⋮ 3 nhưng 1 ko chia hết cho 3)
=> d = 1 . Vậy 2 số sau là 2 số nguyên tố cùng nhau
a,A= { x \(\in\) Z/ -1945 < x \(\le\) 2023}
A = { -1944; -1943; -1942; -1941;... ......;2020; 2021; 2022; 2023}
b, Tổng các phần tử có trong tập hợp A là:
B = -1944 + ( -1943) + (-1942 ) + (-1941) +....+ 2020 + 2021 + 2022 + 2023
Các cặp số đối nhau có trong tổng B là 1944 cặp mà hai số đối nhau có ytoongr bằng 0 vậy tổng B là:
B = 0 x 1944 + 1945 + 1946 +....+ 2020+2021+2022 + 2023
B = 0 + (2023+1945).{ ( 2023 - 1945 ) : 1 + 1} : 2
B = 156736
Bài 2 : CM hai số 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau \(\forall\) n \(\in\) N
Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d . Theo bài ra ta có :
\(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
trừ vế cho vế ta được : 60n + 5 - (60n +4) \(⋮\) d
60n + 5 - 60n - 4 \(⋮\) d
1 \(⋮\) d
\(\Rightarrow\) d = 1
Ước chung lớn nhất của 12n + 1 và 30n + 2 là 1
Vậy 12n + 1 và 30n +2 là hai số nguyên tố cùng nhau (đpcm)
Gọi d là ƯC của a và ab+4
=> a chia hết cho d, ab+4 chia hết cho d => 4 chia hết cho d => d = { 1, 2, 4}
nếu d=2 thì a chia hết cho 2 , ab+4 chia hết cho 2 ( vô lí vì a là số lẻ)
Tương tự d cũng ko thể bằng 4
Vậy d=1 => a và ab+4 là các số nguyên tố cùng nhau (ĐPCM)
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
5(3n+2)=15n+10
3(5n+3)=15n+9
hai số 15n+9 và 15n+10 là hai số tự nhiên liên tiếp nên ng.tố cùng nhau
Từ 5 đến 2017 có tất cả số số hạng là : ( 2017 - 5 ) : 1 + 1 = 2013 ( số )
Dãy số các số hạng chia hết cho 9 là : 9; 18; 27; 36; ...; 2016
Từ 5 đến 2017 có tất cả số số hạng chia hết cho 9 là : ( 2016 - 9 ) : 9 + 1 = 224 ( số )
Từ 5 đến 2017 có tất cả số số hạng không chia hết cho 9 là : 2013 - 224 = 1789 ( số )
Đáp số :......................
~ Hok tốt ~
Lời giải:
Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$
$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow ƯCLN(12n+1, 30n+2)=1$
$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.