Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết thì ta được một cấp số cộng có n+2 số hạng với u 1 = − 3 , u n + 2 = 23.
Khi đó u n + 2 = u 1 + n + 1 d ⇔ n + 1 = u n + 2 − u 1 d = 23 − − 3 2 = 13 ⇔ n = 12
Chọn đáp án A.
u 12 = 23 S 12 = 144 ⇒ u 1 + 11 d = 23 12 2 u 1 + u 12 = 144 ⇔ u 1 + 11 d = 23 u 1 + 23 = 24 ⇔ u 1 = 1 d = 23 − u 1 11 = 2
Chọn đáp án A
Chọn A
Theo giả thiết ta có: u 1 = 2 u 5 = 22
Mà u5 = u1 + 4d nên 22 = 2 + 4d
⇒ 20 = 4 d ⇔ d = 5
⇒ u 2 = 2 + 5 = 7 u 3 = 2 + 2.5 = 12 u 4 = 2 + 3.5 = 17
Vậy tổng ba số viết xen giữa là: 7 +12 +17 = 36
Chọn A
Nếu xen 4 số vào giữa hai số để được một cấp số cộng thì cấp số cộng đó có 6 số hạng.
Theo đầu bài
Ta có: u 1 = 4 ; u 6 = 40
⇒ 40 = 4 + 5. d ⇒ d = 7 , 2
Vậy 4 số thêm vào là:11,2; 18,4; 25,6; 32,8
Theo đề, ta có: \(S_n=3003\)
=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)
=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)
=>n(n+1)=6006
=>n^2+n-6006=0
=>(n-77)(n+78)=0
=>n=77(nhận) hoặc n=-78(loại)
Vậy: n=77
Chọn B.
Gọi bốn số đó là a ;b ;c ;d ta có hệ:
Giải ra ta được : b = 16 ; c = 20 ; d = 25 ; a = 12.
Chọn C
- Do công sai và số hạng đầu là d = 1, u 1 = 1 nên đây là tổng của n số tự nhiên đầu tiên là:
\(a,u_{12}=u_1+\left(12-1\right)d=u_1+11d=\left(-3\right)+11\cdot2=19\)
b, Giả sử số 195 là số hạng thứ n (n \(\in\) N*) của cấp số cộng.
Ta có:
\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow195=-3+\left(n-1\right)\cdot2\\ \Leftrightarrow n=100\)
Vậy số 195 là số hạng thứ 100 của cấp số cộng.