K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

tính nghiệm theo denlta

Cái này tính theo công thức nghiệm rồi nhân thôi

tại 2 nghiệm của 2 pt khác nhau nên không Vi ét đc

17 tháng 5 2019

Em yêu ơi ! Ở đây có ít người lớp 9 lắm , em lên hh sẽ có giáo viên giảng cho 

17 tháng 5 2019

lên Học24h 

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

14 tháng 5 2015

Ta có: đen-ta phẩy= [-(m+1)]2-1(-m-2)= m2+3m+3 =(m+3/2)2+3/4 >0 với mọi m

=>Phương trình luôn có nghiệm x1;x2 với mọi m. KHi đó,theo hệ thức vi-ét:

x1+x2=-b/a=2(m+1) và x1x2=c/a=-(m+2)

Ta có: 1/x1+1/x2= (x1+x2)/x1x2 =(2m+2)/-(m+2)=[ 2(m+2)-2]/-(m+2)

= -2+2/(m+2)

Suy ra: D nguyên khi 2/(m+2) nguyên

=> (m+2) thuộc { 1;-1;2;-2}

<=> m thuộc { -1;-3;0;-4}

17 tháng 4 2020

a) thay m=-1 vào x2(2m-1)x-m=0 ta có:

x2+(-3)x+1=0\(\Delta\)=5

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{cases}}\)

b) A=\(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2\)

Vi-et \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1x_2=-m\end{cases}}\)

=> \(A=\left(1-2m\right)^2-3\left(-m\right)=4m^2-4m+1+3m=4m^2-m+1\)