K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4 2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là 3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là 4 trong không gian với hệ tạo độ oxyz, cho...
Đọc tiếp

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4

2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là

3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là

4 trong không gian với hệ tạo độ oxyz, cho điểm M(2;3;-1) và đường thảng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\). tọa độ hình chiếu vuong góc của M trên( d)là

5 trong không gian oxyz, cho mp(p) 2x+3y+z-11=0. mặt cầu(S) có tâm I (1;-2;1) cà tiếp xúc zới (p) tại H . tọa độ điểm H là

6 pt mặt cầu có tâm I(1;2;3) và tiếp xúc với mp (oxz) là

7 trong khong gian với hệ dợ độ oxyz, mp(Q) có p x-2y+3z-1=0 trong các vecto sau, vecto nào ko phải là một vecto pháp tuyến của mp(Q)

A \(\overline{n}\)(3;-6;9) B (-2;4;-6) C(1;-4;9) D(1;-2-3)

3
NV
12 tháng 5 2020

6.

Mặt phẳng Oxz có pt: \(y=0\)

Khoảng cách từ I đến Oxz: \(d\left(I;Oxz\right)=\left|y_I\right|=2\)

\(\Rightarrow R=2\)

Phương trình mặt cầu:

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=4\)

7.

Mặt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên cũng nhận các vecto có dạng \(\left(k;-2k;3k\right)\) là vtpt

Bạn có ghi nhầm đề bài ko nhỉ? Thế này thì cả C và D đều ko phải vecto pháp tuyến của (Q)

NV
12 tháng 5 2020

4.

Đường thẳng d nhận \(\left(1;-2;2\right)\) là 1 vtcp

Gọi (P) là mặt phẳng qua M và vuông góc d \(\Rightarrow\) (P) nhận \(\left(1;-2;2\right)\) là 1 vtpt

Phương trình (P): \(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Tọa độ hình chiếu M' của M lên d là giao của d và (P) nên thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\)

\(\Rightarrow M'\left(2;5;1\right)\)

5.

(P) nhận \(\left(2;3;1\right)\) là 1 vtpt

Gọi d là đường thẳng qua I và vuông góc (P)

\(\Rightarrow\) d nhận \(\left(2;3;1\right)\) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=-2+3t\\z=1+t\end{matrix}\right.\)

H là giao điểm của d và (P) nên tọa độ thỏa mãn:

\(2\left(1+2t\right)+3\left(-2+3t\right)+1+t-11=0\) \(\Rightarrow t=1\)

\(\Rightarrow H\left(3;1;2\right)\)

7 tháng 1 2018

Đáp án D.

14 tháng 4 2017

1 tính D =\(\int_1^2\)( \(\frac{1}{x^2}+2x\))ds 2 biết \(\int_0^2\)f(x)dx=3. tính C=\(\int_0^2\)[4f(x)-3]dx 3 tính diện tích S của hình phẳng giới hạn bởi các đường y=e^x;y=2 và đường thảng x=1 bằng 4 một vật chuyển đông với vận tốc 10(m/s) thì tăng tốc với gia tốc được xác định bởi công thức a(t)=2t+t^2,(m/s^2) . tính quãng đường của vật đi được sau 9 giây kể từ lúc bắt đầu tăng tốc 10 cho số phức z...
Đọc tiếp

1 tính D =\(\int_1^2\)( \(\frac{1}{x^2}+2x\))ds

2 biết \(\int_0^2\)f(x)dx=3. tính C=\(\int_0^2\)[4f(x)-3]dx

3 tính diện tích S của hình phẳng giới hạn bởi các đường y=e^x;y=2 và đường thảng x=1 bằng

4 một vật chuyển đông với vận tốc 10(m/s) thì tăng tốc với gia tốc được xác định bởi công thức a(t)=2t+t^2,(m/s^2) . tính quãng đường của vật đi được sau 9 giây kể từ lúc bắt đầu tăng tốc

10 cho số phức z thỏa mãn /\(\overline{z}\) -(4+3i)/=2. Tập hợp biễu diễn sốc phức z là một đường tròn có tâm và bán kính lần lượt là

11 trong ko gian oxyz , cho mặt cầu S :x^2+(y-4)^2+(z-1)^2=25. tìm tâm I của mặt cầu (S)

12 viết pt mặt cầu S có tâm I(3;-3;1) và đi qua điểm A(5;-2;1)

13 trong ko gian oxyz , viết pt mặt cầu S tâm I(1;2;-1) và cắt mặt phẳng P:2x-y+2z-1=0 theo một đường tròn có bán kính bằng \(\sqrt{8}\) có phương trình là

14 trong ko gian oxyz, cho 2 điểm A(1;2;-1) vÀ B(-3;0;-1) . Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

15 trong ko gian oxyz, cho mặt phẳng P :2y-z+3=0 và điểm A(2;0;0). mặt phẳng (\(\alpha\)) đi qua A vuông góc với (P) cách gốc tọa độ O một khoảng bằng 4/3 và cắt tia OY ,OZ lần lượt tại các điểm B,C khác O . Phuong trình mặt phẳng (\(\alpha\)) là

16 trng ko gian oxyz , cho hai mặt phẳng P :2x+y-z-1=0 và Q:x-2y+z-5=0 . Khi đó , giao tuyến của (P) va (Q) có một veco chỉ phương là

17 trong ko gian oxyz, đường thẳng đi qua điểm A(-2;4;3) và vuông góc với mp 2x-3y+6z+19=0 có phương trình là

18 trong ko gian oxyz cho điểm A(-2;1;5) và mặt phẳng p:x+y-z+9=0 . tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên mp (P)

19 trong ko gian oxyz cho điểm A(4;-3;2) . tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng d:\(\frac{x+2}{3}=\frac{y+2}{2}=\frac{z}{-1}\)

5
NV
22 tháng 5 2020

16.

\(\overrightarrow{n_{\left(P\right)}}=\left(2;1;-1\right)\) ; \(\overrightarrow{n_{\left(Q\right)}}=\left(1;-2;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(-1;-3;-5\right)\)

\(\Rightarrow\) Giao tuyến 2 mp nhận \(\left(-1;-3;-5\right)\) hoặc \(\left(1;3;5\right)\) là 1 vtcp

17.

Đường thẳng nhận \(\left(2;-3;6\right)\) là 1 vtcp

Pt tham số: \(\left\{{}\begin{matrix}x=-2+2t\\y=4-3t\\z=3+6t\end{matrix}\right.\)

Pt chính tắc: \(\frac{x+2}{2}=\frac{y-4}{-3}=\frac{z-3}{6}\)

18.

Pt tham số đường thẳng d qua A và vuông góc (P): \(\left\{{}\begin{matrix}x=-2+t\\y=1+t\\z=5-t\end{matrix}\right.\)

H là giao điểm d và (P) nên tọa độ thỏa mãn:

\(-2+t+1+t-5+t+9=0\Rightarrow t=-1\) \(\Rightarrow H\left(-3;0;6\right)\)

19.

Pt mặt phẳng (P) qua A và vuông góc d:

\(3\left(x-4\right)+2\left(y+3\right)-z=0\)

\(\Leftrightarrow3x+2y-z-6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)

H là giao điểm d và (P) nên tọa độ thỏa mãn:

\(3\left(-2+3t\right)+2\left(-2+2t\right)+t=0\Rightarrow t=\frac{5}{7}\) \(\Rightarrow H\left(\frac{1}{7};-\frac{4}{7};-\frac{5}{7}\right)\)

NV
22 tháng 5 2020

14.

\(\overrightarrow{BA}=\left(4;2;0\right)=2\left(2;1;0\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1;-1\right)\)

Mp trung trực AB vuông góc AB và qua M có pt:

\(2\left(x+1\right)+1\left(y-1\right)=0\Leftrightarrow2x+y+1=0\)

15.

Gọi pt \(\left(Q\right)\) có dạng \(ax+by+cz+d=0\) (\(d\ne0\))

(Q) qua A nên: \(2a+d=0\) \(\Rightarrow d=-2a\)

\(\left(P\right)\perp\left(Q\right)\Leftrightarrow2b-c=0\) \(\Rightarrow c=2b\)

\(d\left(O;\left(Q\right)\right)=\frac{4}{3}\Leftrightarrow\frac{\left|d\right|}{\sqrt{a^2+b^2+c^2}}=\frac{4}{3}\Leftrightarrow9d^2=16\left(a^2+b^2+c^2\right)\) \(\Leftrightarrow36a^2=16\left(a^2+b^2+4b^2\right)\) \(\Leftrightarrow20a^2=80b^2\Leftrightarrow\left[{}\begin{matrix}a=2b\\a=-2b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=2;b=1;c=2;d=-4\\a=2;b=-1;c=-2;d=-4\end{matrix}\right.\) Có 2 mặt phẳng (Q) thỏa mãn: \(\left[{}\begin{matrix}2x+y+2z-4=0\\2x-y-2z-4=0\end{matrix}\right.\)

1 tháng 11 2018

9 tháng 8 2017