K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Hỏi đáp Vật lý

Xem t = 0 là lúc cả hai mạch bắt đầu dao động 

Phương trình hiệu điện thế trên 2 tụ C1 và C2 lần lượt có dạng 

\(\begin{cases}u_1=12cos\left(\omega t\right)\left(V\right)\\u_2=6cos\left(\omega t\right)\left(V\right)\end{cases}\)

Độ chênh lệch Hiệu điện thế: \(\Delta u=u_1-u_2=6cos\left(\omega t\right)\left(V\right)\)

\(u_1-u_2=6cos\left(\omega t\right)=\pm3\Rightarrow cos\left(\omega t\right)=\pm0,5\Rightarrow cos\left(\frac{2\pi}{T}t\right)=\pm0,5\)

\(\Rightarrow\Delta t_{min}=\frac{T}{6}=\frac{10^{-6}}{3}s\)

12 tháng 5 2016

 

\(\frac{10^{-6}}{3}\)s

22 tháng 1 2017

5 tháng 7 2017

17 tháng 8 2016

Sử sụng hệ thức: \left ( \frac{i}{I_{0}} \right )^{2}+\left ( \frac{q}{q_{0}} \right )^{2}= 1

Thay số và giải hệ phương trình trìm I0 và q0

Tần số góc: ω  = \frac{I_{0}}{q_{0}} = 50 (rad/s)

15 tháng 6 2016

\(2LC\omega^2=1\rightarrow2Z_L=Z_C\rightarrow2u_L=-uc\)

\(u_m=u_R+u_L+u_c=40+\left(-30\right)+60=70V\)

Chọn B

1.Đặt điện áp xoay chiều u = 220\(\sqrt{2}\) cos( 100\(\pi\)t) V ( t tính bắng s) vào 2 đầu đoạn mạch gồm điện trở R = 100 ôm , cuộn cảm thuần L = \(\frac{2\sqrt{3}}{\pi}\)H và tụ điện C = \(\frac{10^{-4}}{\pi\sqrt{3}}\)F mắc nối tiếp . Trong 1 chu kì , khoảng thời gian điện áp hai đầu đoạn mạch sinh công dương cung cấp điện năng cho mạch bằng  ?2.Cho mạch xoay chiều gồm 1 cuộn dây có độ tự cảm L...
Đọc tiếp

1.Đặt điện áp xoay chiều u = 220\(\sqrt{2}\) cos( 100\(\pi\)t) V ( t tính bắng s) vào 2 đầu đoạn mạch gồm điện trở R = 100 ôm , cuộn cảm thuần L = \(\frac{2\sqrt{3}}{\pi}\)H và tụ điện C = \(\frac{10^{-4}}{\pi\sqrt{3}}\)F mắc nối tiếp . Trong 1 chu kì , khoảng thời gian điện áp hai đầu đoạn mạch sinh công dương cung cấp điện năng cho mạch bằng  ?

2.Cho mạch xoay chiều gồm 1 cuộn dây có độ tự cảm L điện trở R mắc nối tiếp với tụ điện C .Đặt vào 2 đầu đoạn mạch 1 điện áp u = \(100\sqrt{2}cos\left(100\pi t\right)\)V .Khi đo điện áp hiệu dụng đo được ở 2 đầu tụ điện có giá trị gấp 1,2 lần điện áp hiệu dụng ở 2 đầu cuộn dây.Dùng dây dẫn nối tắt 2 bản tụ điện thì cường độ dòng điện hiệu dụng không đổi bằng 0,5 A .Tìm ZL

5
22 tháng 10 2015

Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.

1. \(Z_L=200\sqrt{3}\Omega\)\(Z_C=100\sqrt{3}\Omega\)

Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)

Công suất tức thời: p = u.i

Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.

Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có: 

u u i i 120° 120°

Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.

Tổng góc quét: 2.120 = 2400

Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)

22 tháng 10 2015

2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)

\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)

\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)

Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)

\(\Rightarrow Z_L=220\Omega\)

24 tháng 8 2016

Có: \(L=CR^2=Cr^2\Rightarrow R^2=r^2=Z_LZ_C,URC=\sqrt{3U}_{Lr}\Leftrightarrow Z^2_{RC}=3Z^2_{Lr}\Leftrightarrow R^2+Z^2_C=3\left(Z^2_L+R^2\right)\)

\(\Leftrightarrow-3Z^2_L+Z^2_C=2R^2\) (*) \(R^2=Z_LZ_C\) (**)

Từ (*) và (**) có: \(Z_L=\frac{R}{\sqrt{3}};Z_C=\sqrt{3}R\Rightarrow Z=\sqrt{\left(R+r\right)^2Z^2_{LC}}=\frac{4R}{\sqrt{3}}\Rightarrow\cos\phi=\frac{R+r}{Z}=\frac{\sqrt{3}}{2}\approx0,866\)

A đúng

24 tháng 8 2016

Ta có: L = R^2 C = r^2 C
\Rightarrow Z_L. Zc = R^2 = r^2

Điện áp hiệu dụng của đoạn mạch RC gấp \sqrt{3} lần điện áp hiệu dụng hai đầu cuộn dây 
I. \sqrt{R^2 + Z_c^2} = \sqrt{3}.I. \sqrt{r^2 + Z_L^2}\Leftrightarrow R^2 + Z_c^2 = 3 (r^2 + Z_L^2)
\Leftrightarrow Z_L.Zc + Z_c^2 = 3.Z_L.Zc + 3 Z_L^2
\Leftrightarrow Zc(Z_L + Zc) = 3 Z_L (Z_L + Zc)
\Rightarrow Zc = 3Z_L \Rightarrow R^2 = 3 Z_L^2 \Rightarrow R = Z_L\sqrt{3}
=> Hệ số công suất của đoạn mạch là
cos \varphi = \frac{R + r}{\sqrt{(R + r)^2 + (Z_L - Zc)^2}} = \frac{2R}{\sqrt{4R^2 + 4 Z_L^2}} = \frac{2\sqrt{3}Z_L}{\sqrt{4.3. Z_L^2 + 4 Z_L^2}} = \frac{\sqrt{3}}{2}

19 tháng 2 2016

Đáp án C.
lúc đầu ta có :
UMB=2UR => ZMB=2R <=> ZC=\(\sqrt{3}\)R mà C=\(\frac{L}{R^2}\) => ZL=\(\frac{R}{\sqrt{3}}\)
lúc sau ta có Uc' max :
Zc'.ZL=R2\(Z^2_L\) => Zc'=\(\frac{4R}{\sqrt{3}}\)
\(\text{tanφ}=\frac{Z_L-Z_C}{R}\Rightarrow\tan\varphi=-\sqrt{3}\Rightarrow\varphi=-\frac{\pi}{3}\)