Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu m = 5 thì A ∩ B = 151;
- Nếu m < 5 thì A ∩ B = Ø;
- Nếu m > 5 thì A ∩ B = [5; m];
Chúc bạn học tốt ~
- Nếu m = 5 thì A ∩ B = 151;
- Nếu m < 5 thì A ∩ B = Ø;
- Nếu m > 5 thì A ∩ B = [5; m];
Chúc bạn học tốt ~
\(a\text{) Gọi }M\left(m;m^2\right)\in P\)
\(d\left(M;Ox\right)=d\left(M;Oy\right)\Leftrightarrow\left|x_M\right|=\left|y_M\right|\)\(\Leftrightarrow\left|m\right|=\left|m^2\right|\Leftrightarrow m^2=m\text{ hoặc }m^2=-m\)
\(\Leftrightarrow m^2-m=0\text{ hoặc }m^2+m=0\)
\(\Leftrightarrow m=0\text{ hoặc }m=1\text{ hoặc }m=-1\)
\(\text{Kết luận: }M\left(0;0\right)\text{ hoặc }M\left(1;1\right)\text{ hoặc }M\left(-1;1\right)\)
\(b\text{) }A\in d\Rightarrow a+b=1\text{ (1)}\)
\(\text{Phương trình hoành độ giao điểm của }P\text{ và }d\text{ là: }x^2=ax+b\)
\(\Leftrightarrow x^2-ax-b=0\text{ (*)}\)
\(d\text{ là tiếp tuyến của }P\Leftrightarrow d\text{ giao }P\text{ tại 1 điểm duy nhất }\Leftrightarrow\left(\text{*}\right)\text{ có nghiệm kép }\)
\(\Leftrightarrow\Delta=a^2+4b=0\text{ (2)}\)
\(\left(1\right)\Leftrightarrow b=1-a;\text{ thay vào (2) ta được: }a^2+4\left(1-a\right)=0\)
\(\Leftrightarrow a^2-4a+4=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a=2\)
\(\Rightarrow b=-1\)
\(\text{Vậy }a=2;\text{ }b=-1\)
c: y=(m-1)x+4
=>\(\left(m-1\right)x-y+4=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
A ∪ B là một khoảng khi và chỉ khi A ∩ B ≠ Ø.
Ta thấy A ∩ B = Ø Khi m + 1 ≤ 3 hoặc m ≥ 5 tức là khi m ≤ 2 hoặc m ≥ 5.
Vậy nếu 2 < m < 5 thì A ∪ B là một khoảng.
Cụ thể hơn ta tìm được:
- Nếu 2 < m ≤ 3 thì A ∪ B là khoảng (m; 5);
- Nếu 3 < m ≤ 4 thì A ∪ B là khoảng (3; 5);
- Nếu 4 < m < 5 thì A ∪ B là khoảng (3; m + 1).
A ∪ B là một khoảng khi và chỉ khi A ∩ B ≠ Ø. Ta thấy A ∩ B = Ø Khi m + 1 ≤ 3 hoặc m ≥ 5 tức là khi m ≤ 2 hoặc m ≥ 5. Vậy nếu 2 < m < 5 thì A ∪ B là một khoảng. Cụ thể hơn ta tìm được: - Nếu 2 < m ≤ 3 thì A ∪ B là khoảng (m; 5); - Nếu 3 < m ≤ 4 thì A ∪ B là khoảng (3; 5); - Nếu 4 < m < 5 thì A ∪ B là khoảng (3; m + 1).