K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài giải : Diện tích tam giác ABD là:

(12 x (12 : 2))/2 = 36 (cm2)

Diện tích hình vuông ABCD là:

36 x 2 = 72 (cm2)

Diện tích hình vuông AEOK là:

72 : 4 = 18 (cm2)

Do đó : OE x OK = 18 (cm2)

r x r = 18 (cm2)

Diện tích hình tròn tâm O là:

18 x 3,14 = 56,92 (cm2)

Diện tích tam giác MON = r x r : 2 = 18 : 2 = 9 (cm2)

Diện tích hình vuông MNPQ là:

9 x 4 = 36 (cm2)

Vậy diện tích phần gạch chéo là:

56,52 - 36 = 20,52 (cm2)

Bài giải : Diện tích tam giác ABD là:

(12 x (12 : 2))/2 = 36 (cm2)

Diện tích hình vuông ABCD là:

36 x 2 = 72 (cm2)

Diện tích hình vuông AEOK là:

72 : 4 = 18 (cm2)

Do đó : OE x OK = 18 (cm2)

r x r = 18 (cm2)

Diện tích hình tròn tâm O là:

18 x 3,14 = 56,92 (cm2)

Diện tích tam giác MON = r x r : 2 = 18 : 2 = 9 (cm2)

Diện tích hình vuông MNPQ là:

9 x 4 = 36 (cm2)

Vậy diện tích phần gạch chéo là:

56,52 - 36 = 20,52 (cm2)

13 tháng 4 2018

a, Tính được DB=15cm.  A D B ^ ≈ 37 0 ;  A B D ^ ≈ 53 0

b, Tính được AO=7,2cm, DO=9,6cm và AC=20cm

c, Kẻ OK ⊥ DC tại K

DH=AB=9cm, DC=16cm, DK=5,76cm và OK=7,68cm

Từ đó  S D O H = O K . D H 2 = 7 , 68 . 9 2 = 34,56 c m 2

DD
8 tháng 7 2021

Câu 11.12. 

Kẻ đường cao \(AH,BK\).

Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).

Đặt \(AB=AH=x\left(cm\right),x>0\).

Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)

Xét tam giác \(AHD\)vuông tại \(H\):

\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore) 

Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):

\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)

Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)

\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))

Vậy đường cao của hình thang là \(2\sqrt{5}cm\).

DD
8 tháng 7 2021

Câu 11.11. 

Kẻ \(AE\perp AC,E\in CD\).

Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành. 

Suy ra \(AE=BD=15\left(cm\right)\).

Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AC=20\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),

2 tháng 2 2019

Xét ∆ ADB vuông tại A có: AH là đường cao ứng với cạnh huyền BD

⇒ A H 2 = HB. HD = 8.18  HA = 12 (cm) (hệ thức lượng trong tam giác vuông)

Xét ADC vuông tại D có: DH là đường cao ứng với cạnh huyền AC

⇒ H D 2 = H A . H C ⇒ 18 2 = 12 H C => HC = 27 (cm) (hệ thức lượng trong tam giác vuông)

Ta có: AC = AH + HC = 12 + 27 = 39 cm

BD = BH + HD = 8 + 18 = 26cm

S A B C D = A C . B D 2 = 26.39 2 = 507 c m 2

Đáp án cần chọn là: D