Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tách khối đa diện thành hai phần.
Phần 1. Lăng trụ tam giác DAF.CBE có V = 1 2
Phần 2. Hình chóp tam giác S.CEFD có
V S . C D F D = V B . C E F D = 2 3 V D A F . C B E = 1 3 ⇒ V A B C D E F = 5 6
Đáp án cần chọn là D
Đáp án D.
Vì S đối xứng với B qua
D E ⇒ d B ; D C E F = d S ; D C E E F .
Gọi M là trung điểm
C E ⇒ B M ⊥ D C E F ⇒ d B ; D C E F = B M .
Khi đó, thể tích V A B C D S E F = V A D F . B C E + V S . D C E F
= A B x S Δ A D F + 1 3 d S ; D C E F x S D C E F = 1. 1 2 + 1 3 . 2 2 . 2 = 1 2 + 1 3 = 5 6 .
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
a: Xét tứ giác OBDC có
\(\widehat{OBD}+\widehat{OCD}=180^0\)
Do đó: OBDC là tứ giác nội tiếp
b: Xét ΔEBA và ΔECB có
\(\widehat{E}\) chung
\(\widehat{EAB}=\widehat{EBC}\)
Do đó: ΔEBA\(\sim\)ΔECB
Suy ra: EB/EC=EA/EB
hay \(EB^2=EC\cdot EA\)