Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+ Biểu đồ biểu diễn nhiệt độ trung bình các tháng năm 2020 tại Thành phố Hồ Chí Minh.
+ Đơn vị thời gian là tháng, đơn vị số liệu là độ C.
+ Tháng 4 có nhiệt độ trung bình cao nhất.
+ Tháng 12 có nhiệt độ trung bình thấp nhất.
+ Nhiệt độ trung bình tăng trong những khoảng thời gian từ tháng: 1 – 2; 2 – 3; 3 – 4.
+ Nhiệt độ trung bình giảm trong những khoảng thời gian từ tháng: 4 – 5; 5 – 6; 6 – 7; 8 – 9; 10 – 11; 11 – 12.
+ Nhiệt độ trung bình không đổi trong những khoảng thời gian từ tháng: 7 – 8; 9 – 10.

Diện tích hình vuông là : \(2x.2x = 4{x^2}\)
Diện tích hình chữ nhật là : \(3.x = 3x\)
Diện tích phần cần tìm là : \(4{x^2} - 3x\)

Vì a và b là chiều dài và chiều rộng của hình chữ nhật nên diện tích = a.b =12
\( \Rightarrow \) b tỉ lệ nghịch với a theo hệ số tỉ lệ là 12.

Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)

Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

a) Bể bơi có chiều dài là 3x (m), chiều rộng là x (m) nên đa thức biểu thị diện tích bể bơi là:
\(B = 3x. x = 3x^2 (m^2)\)
b) Mảnh đất có chiều dài là 65 (m), chiều rộng là 5 + x + 4 = x + 9 (m) nên đa thức biểu thị diện tích mảnh đất là:
\(D = 65. (x+9) = 65x + 585 (m^2)\)
c) Diện tích phần đất xung quanh bể bơi = diện tích mảnh đất – diện tích bể bơi nên đa thức biểu thị diện tích phần đất xung quanh bể bơi là:
\(Q = D – B = 65x + 585 - 3x^2 = -3x^2+65x + 585(m^2)\)

Đoạn thẳng đơn vị được chia thành 6 phần bằng nhau, lấy một đoạn làm đơn vị mới, đơn vị mới bằng \(\frac{1}{6}\) đơn vị cũ.
Điểm A nằm bên phải gốc O và cách O một đoạn bằng 10 đơn vị mới. Do đó điểm A biểu diễn số hữu tỉ \(\frac{{10}}{6} = \frac{5}{3}\)
Điểm B nằm bên trái gốc O và cách O một đoạn bằng 5 đơn vị mới. Do đó điểm B biểu diễn số hữu tỉ \(\frac{{ - 5}}{6}\)
Điểm C nằm bên trái gốc O và cách O một đoạn bằng 13 đơn vị mới. Do đó điểm C biểu diễn số hữu tỉ \(\frac{{ - 13}}{6}\)

Bài 3:
a: \(A=3^2\cdot\frac{1}{243}\cdot81^2\cdot\frac{1}{3^3}\)
\(=\frac{9}{243}\cdot81\cdot81\cdot\frac{1}{27}\)
\(=\frac{1}{27}\cdot81\cdot3=3\cdot3=9\)
b: \(B=\left(4\cdot2^5\right):\left(2^3\cdot\frac{1}{16}\right)\)
\(=2^2\cdot2^5:\left(\frac{2^3}{16}\right)=2^7:\frac12=2^7\cdot2=2^8=256\)
Bài 2:
a: \(A=\left(3^2\right)^2-\left(-2^3\right)^2-\left(-5^2\right)^2\)
\(=3^4-2^6-\left(-25\right)^2\)
=81-64-625
=17-625
=-608
b: \(B=2^3+3\cdot\left(\frac12\right)^0\cdot\left(\frac12\right)^2\cdot4+\left\lbrack\left(-2\right)^2:\frac12\right\rbrack:8\)
\(=8+3\cdot1\cdot\frac14\cdot4+4\cdot\frac28\)
=8+3+1
=11+1
=12
Bài 1:
a: \(\left(\frac23\right)^3\cdot\left(-\frac34\right)^2\cdot\left(-1\right)^5:\left(\frac25\right)^2\cdot\left(-\frac{5}{12}\right)^2\)
\(=\frac{2^3}{3^3}\cdot\frac{3^2}{4^2}\cdot\left(-1\right):\frac{4}{25}\cdot\frac{25}{144}\)
\(=\frac{2^3}{2^4}\cdot\frac13\cdot\left(-1\right)\cdot\frac{25}{4}\cdot\frac{25}{144}=\frac16\cdot\left(-1\right)\cdot\frac{625}{576}=\frac{-625}{3456}\)
b:Sửa đề: \(\frac{\left(6^6+6^3\cdot3^3+3^6\right)}{-73}\)
\(=\frac{3^6\cdot2^6+3^6\cdot2^3+3^6}{-73}\)
\(=\frac{3^6\left(2^6+2^3+1\right)}{-73}=\frac{3^6\cdot73}{-73}=-3^6=-729\)

Xét tam giác MNP có:
\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP} (=60^0)\)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)
Ta có diện tích hình chữ nhật lớn là : \((2x + 4)(3x + 2) = 2x(3x + 2) + 4(3x + 2) = 6{x^2} + 4x + 12x + 8 = 6{x^2} + 16x + 8\)
Diện tích hình chữ nhật nhỏ là : \(x(x + 1) = {x^2} + x\)
Diện tích phần cần tìm là : \(6{x^2} + 16x + 8 - {x^2} - x\)\( = 5{x^2} + 15x + 8\)