K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔBAC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)

Xét ΔGBC có 

P là trung điểm của GB

Q là trung điểm của GC

Do đó: PQ là đường trung bình của ΔGBC

Suy ra: PQ//BC và \(PQ=\dfrac{BC}{2}\left(2\right)\)

Từ (1) và (2) suy ra NM//PQ và NM=PQ

hay MNPQ là hình bình hành

1 tháng 12 2021

TK

a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD

=> O là trung điểm của AC và BD

hay OA = OC và OD = OB

Xét tam giác ADC có:

AF là đường trung tuyến ( F là trung điểm của DC)

DO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến này cắt nhau tại M

=> M là trọng tâm của tam giác ADC

Tương tự, xét tam giác ABC có:

AE là đường trung tuyến ( E là trung điểm của BC)

BO là đường trung tuyến ( OA=OC)

Hai đường trung tuyến cắt nhau tại N

=> N là trọng tâm của tam giác ABC

b, 

Nối M với C ; N với C

Có OM = 1313 OD

ON = 1313 OB

mà OD = OB (cm câu a)

=> OM = ON

Xét tứ giác ANCM có:

OM = ON (cmt)

OA = OC (cm câu a)

=> tứ giác ANCM là hình bình hành

=> AM//CN hay AF//CN

Xét ΔΔ DNC có:

DF=CF (gt)

MF//CN (AF//CN)

=> DM = MN (1)

Gọi I là giao điểm của EF và MC

Xét ΔΔ BCD có:

DF = CF (gt)

BE = CE (gt)

=> EF là đường trung bình của ΔΔ BCD

=> EF//BD

hay EI//BD

Xét ΔΔ BMC có:

EI//BM ( M∈∈ BD)

BE = CE (gt)

=> MN = NB (2)

Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại

Từ (1) và (2) suy ra :

DM = MN =NB (đpcm)

 

1 tháng 12 2021

hơi dài

31 tháng 8 2023

image

Ta có: \(\widehat{HAF}+\widehat{FAB}+\widehat{DAB}+\widehat{DAH}=360^o\)

Mà \(\widehat{FAB}=\widehat{DAH}=90^O\)

\(\Rightarrow\widehat{HAF}+\widehat{DAB}=180^o\)

Ta lại có: \(\widehat{ADC}+\widehat{DAB}=180^o\) ( 2 góc trong cùng phía nên kề bù với nhau )

\(\Rightarrow\widehat{HAF}=\widehat{ADC}\)

Xét \(\Delta HAF\) và \(\Delta ADC\) có:

\(HA=HD\left(gt\right)\)

\(\widehat{HAF}=\widehat{ADC}\left(CMT\right)\)

\(AF=DC\left(gt\right)\)

Vậy \(\Delta HAF\) \(=\) \(\Delta ADC\) \(\left(c.g.c\right)\)

\(\Rightarrow AC=FH\) ( 2 cạnh tưng ứng )

b) Ta có: \(\widehat{CBE}=\widehat{ABC}+90^o\)

\(\widehat{GDC}=\widehat{ADC}+90^o\)

Mà \(\widehat{ADC}=\widehat{ABC}\)

\(\Rightarrow\widehat{CBE}=\widehat{GDC}\)

Xét \(\Delta CBE\) và \(\Delta GDC\) ta có:

\(EB=CD\left(gt\right)\)

\(\widehat{CBE}=\widehat{GDC}\left(CMT\right)\)

\(CB=GD\left(gt\right)\)

Vậy \(\Delta CBE=\Delta GDC\left(c.g.c\right)\)

\(\Rightarrow CE=GC\) ( 2 cạnh tương ứng )

\(\Rightarrow\Delta CEG\) cân tại \(G\)

31 tháng 8 2023

a) Ta biết rằng trong hình bình hành ABCD, các đường chéo chia nhau đều và cắt nhau ở trung điểm.

Vì vậy, ta có AC = FH.

b) Vì ABFE là hình vuông, nên các cạnh AB và FE là song song và bằng nhau.

Tương tự, vì ADGH là hình vuông, nên các cạnh AD và GH cũng là song song và bằng nhau. Do đó, ta có AB || FE và AD || GH. Vì AC = FH (chứng minh ở câu a), và AB || FE, AD || GH,

nên theo tính chất của các đường song song, ta có AC || FH. Do đó, AC vuông góc với FH.

c) Ta biết rằng trong hình vuông, các đường chéo chia nhau đều và cắt nhau vuông góc.

Vì vậy, ta có AG ⊥ CE và CG ⊥ AE. Vì AG ⊥ CE, nên AGC là tam giác vuông tại G.

Vì CG ⊥ AE, nên CEG là tam giác vuông tại C. Vì AG = GC (vì AGC là tam giác vuông cân), nên ta cũng có CG = GC.

Do đó, ta có CEG là tam giác vuông cân.

Vậy, ta đã chứng minh được a), b), c) trong đề bài.

25 tháng 9 2021

mình đang cần gấp

a)Xet hinh binh hanh ABCD co:

AB = DC va AB song song voi DC (t/c hinh binh hanh)

ma M la trung diem  AB, N la trung diem DC(gt)

=>AM=DN va AM song song voi DN

=>AMND la hinh binh hanh (t/g co 1 cap canh doi song song va bang nhau)

Ta co: AB=2AD(gt)

ma M la trung diem AD(gt)

=>AM=AD

=>AMND la hinh thoi (hinh binh hanh co 2 canh ke bang nhau)

27 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

△ ABE =  △ CDF (g.c.g) ⇒ S A B E = S C D F  (l)

△ AED =  △ CFB (g.c.g) ⇒ S A E D = S C F B (2)

Từ (1) và (2) ⇒  S A B E + S C F B = S C D F + S A E D

Hay  S A B C F E = S A D C F E