K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Phương án A sai vì AD và (BEF) cắt nhau tại A.

Phương án B đúng vì AD // BC, AF // BE

Phương án C sai vì (ABD) và (EFC) có điểm C chung

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án B

26 tháng 11 2018

Đáp án D

10 tháng 7 2017

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: AD // BC (ABCD là hình bình hành) 

Mà AD thuộc (AFD), BC thuộc (BEC) 

Nên (AFD) // (BEC) 

b) Trong (ABEF) kẻ đường thẳng d qua M // AF

Ta có: d cắt AB tại I, d cắt EF tại J (1)

Trong (ABCD) có I thuộc (P) mà (P) // (AFD) 

Suy ra từ I kẻ IH // AD (2) 

(1)(2) suy ra (IJH) trùng (P) và // (AFD) 

Ta có: (P) cắt AC tại N mà AC thuộc (ABCD), IH thuộc (P) và (ABCD) 

Suy ra: IH cắt AC tại N

Ta có các hình bình hành IBCH, IBEJ

Gọi O là trung điểm của AB

Có M là trọng tâm △ABE

Suy ra: \(\dfrac{MO}{ME}=\dfrac{1}{2}\).

Ta có: AB // CD suy ra: AI // CH

Định lí Ta-lét: \(\dfrac{AN}{NC}=\dfrac{AI}{CH}\)

mà CH = IB (IBCH là hình bình hành)

Suy ra: \(\dfrac{AN}{NC}=\dfrac{AI}{IB}\)

Ta có: AB // EF nên OI // EJ

Do đó: \(\dfrac{OI}{EJ}=\dfrac{MO}{ME}=\dfrac{1}{2}\)

Mà EJ = IB (IBEJ là hình bình hành)

Suy ra: \(\dfrac{OI}{IB}=\dfrac{1}{2}\) hay IB = 2OI

Ta có: \(\dfrac{AN}{NC}=\dfrac{AI}{IB}=\dfrac{AO+OI}{2OI}\)

Mà OA = OB (O là trung điểm AB)

Nên \(\dfrac{AN}{NC}=2\).

17 tháng 6 2017

Đáp án C

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


Gọi I,J lần lượt là trung điểm của BC, BF

Suy ra, IJ là đường trung bình của tam giác BCF.

Do đó, IJ // CF (1)

Tam giác AIJ có:  \(\frac{{AM}}{{AI}} =\frac{{AN}}{{AJ}}= \frac{2}{3}\)

Suy ra, MN // IJ (theo Ta lét) (2)

Từ (1) và (2) suy ra  MN // CF, mà CF nằm trong (ACF).

Suy ra MN // (ACF)

16 tháng 12 2019

a) Do các tứ giác ABCD và ABEF là các hình bình hành

=> O là trung điểm của AC và BD

và O’ là trung điểm của AE và BF. (tính chất hình bình hành).

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ ΔBFD có OO’ là đường trung bình nên OO’ // DF

mà DF ⊂ (ADF)

⇒ OO' // (ADF)

+ ΔAEC có OO’ là đường trung bình nên OO’ // EC

mà EC ⊂ (BCE)

⇒ OO’ // (BCE).

b)

Giải bài tập Đại số 11 | Để học tốt Toán 11

Ta thấy mp(CEF) chính là mp(CEFD).

Gọi I là trung điểm của AB:

+ M là trọng tâm ΔABD

⇒ IM/ ID = 1/3.

+ N là trọng tâm ΔABE

⇒ IN/IE = 1/3.

+ ΔIDE có IM/ID = IN/IE = 1/3

⇒ MN // DE mà ED ⊂ (CEFD)

nên MN // (CEFD) hay MN // (CEF).

31 tháng 3 2017

a) OO' là đường trung bình của tam giác DBF nên OO' // DF.
DF nằm trong mặt phẳng (ADF) nên OO' // mp(ADF).
Tương tự OO' // CE mà CE nằm trong mặt phẳng (BCE) nên OO' // mp(BCE).

b) Gọi J là trung điểm đoạn thẳng AB, theo định lí Ta-lét \(\Rightarrow\) MN // DE => đpcm.

25 tháng 11 2017

Đáp án C

+) Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)

Suy ra BC // (ADF); BE // (ADF)

Mà BC ∩  BE = B

Do đó (ADF) // (BEC).

+) O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD

Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF

 MO’ // (ADF)  (1)

Tương tự MO là đường trung bình của tam giác ABD nên MO // AD

 MO // (ADF)  (2)

Từ (1) và (2) suy ra (MOO’) // (ADF)

+) Chứng minh tương tự ta cũng có (MOO’) // (BCE).

+) Hai mặt phẳng (AEC) và (BDF) có:

AC ∩  DB = O ; AE ∩  BF = O’

Suy ra (AEC) ∩  (BDF) = OO’.

Vậy khẳng định (I); (II); (III) đúng.