Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét pt tọa độ giao điểm:
X²=(m+4)x-2m-5
<=> -x²+(m+4)x-2m-5
a=-1. b= m+4. c=2m-5
Để pt có 2 No pb =>∆>0
=> (m+4)²-4×(-1)×2m-5>0
=> m² +2×m×4+16 +8m-20>0
=> m²+9m -2>0
=> x<-9 và x>0
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
\(x^2=\left(2m-1\right)x-2m+1\)
\(\Leftrightarrow x^2-\left(2m-1\right)x+2m-1=0\)(1)
Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt
Tức là \(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-1\right)>0\)
\(\Leftrightarrow\left(2m-1\right)\left(2m-5\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}m< \frac{1}{2}\\m>\frac{5}{2}\end{cases}}\)
Theo hệ thức Vi-ét có : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=2m-1\end{cases}}\)
Vì \(x_1< \frac{3}{2}< x_2\)
\(\Rightarrow\left(x_1-\frac{3}{2}\right)\left(x_2-\frac{3}{2}\right)< 0\)
\(\Leftrightarrow x_1x_2-\frac{3}{2}\left(x_1+x_2\right)+\frac{9}{4}< 0\)
\(\Leftrightarrow2m-1-\frac{3}{2}\left(2m-1\right)+\frac{9}{4}< 0\)
\(\Leftrightarrow2m-1-3m+\frac{3}{2}+\frac{9}{4}< 0\)
\(\Leftrightarrow-m< -\frac{11}{4}\)
\(\Leftrightarrow m>\frac{11}{4}\)
a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)
Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)
Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb
b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)
Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có :
\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)
mà a + b + c = 0 => 2 + 2 - 4 = 0
vậy pt có 2 nghiệm
\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)
a/ Chắc bạn ghi đề không giống cô giáo cho, đề hợp lý là chứng minh d qua I sẽ có đúng 1 điểm chung với (P)
d qua I sẽ có dạng \(y=6x-9\)
Giao điểm d và (P): \(x^2=6x-9\Leftrightarrow x^2-6x+9=0\)
Do pt có nghiệm kép \(x=3\) nên d có đúng 1 điểm chung với (P)
b/ Pt hoành độ giao điểm: \(x^2-2mx+2m+3=0\)
Để biểu thức đề bài xác định và pt có 2 nghiệm
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=m^2-2m-3\ge0\\x_1+x_2=2m\ge0\\x_1x_2=2m+3\ge0\end{matrix}\right.\) \(\Rightarrow m\ge3\)
\(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)
\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\)
\(\Leftrightarrow2m+2\sqrt{2m+3}=12\)
\(\Leftrightarrow2m+3+2\sqrt{2m+3}-15=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2m+3}=3\\\sqrt{2m+3}=-5\left(l\right)\end{matrix}\right.\) \(\Rightarrow m=3\) (thỏa mãn)
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix} 0\leq m< 1\\ \sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)