K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2\ne n+3\end{matrix}\right.\Leftrightarrow3m=2\Leftrightarrow m=\dfrac{2}{3}\)

b: Để hai đường thẳng cắt nhau thì \(m-1\ne-2m+1\)

\(\Leftrightarrow3m\ne2\)

hay \(m\ne\dfrac{2}{3}\)

a: Để hai đường thẳng trùng nhau thì \(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)

Vậy: Không có (m,n) nào để hai đường thẳng trùng nhau

Để hai đường thẳng trùng nhau thì 

\(\left\{{}\begin{matrix}m-1=1-2m\\n-2=n+3\left(loại\right)\end{matrix}\right.\)

a: Đặt (d1): \(y=\left(2m-1\right)x+n+1\)

(d2): \(y=\left(5-m\right)x-1-n\)

Để (d1) cắt (d2) thì \(2m-1\ne5-m\)

=>\(3m\ne6\)

=>\(m\ne2\)

b: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=5-m\\n+1\ne-1-n\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3m=6\\2n\ne-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=2\\n\ne-1\end{matrix}\right.\)

c: Để \(\left(d1\right)\equiv\left(d2\right)\) thì \(\left\{{}\begin{matrix}2m-1=5-m\\n+1=-n-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3m=6\\2n=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=2\\n=-1\end{matrix}\right.\)

a: Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m^2-1=3\\m-3\ne2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\-m\ne2\end{matrix}\right.\Leftrightarrow m=2\)

b: Để hai đồ thị trùng nhau thì \(\left\{{}\begin{matrix}m^2-1=3\\m-3=2m-1\end{matrix}\right.\)

hay m=-2

a: Để hai đồ thị song song thì \(\left\{{}\begin{matrix}2m-3=m\\n-2\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n\ne5\end{matrix}\right.\)

 

b: Để hai đồ thị cắt nhau thì \(2m-3\ne m\)

hay \(m\ne3\)

a: Để hai đường thẳng này cắt nhau thì \(2m+1< >2\)

=>\(2m\ne1\)

=>\(m\ne\dfrac{1}{2}\)

b: Để hai đường thẳng này song song thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3\ne3k\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=1\\-k\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k\ne-3\end{matrix}\right.\)

c: Để hai đường thẳng này trùng nhau thì \(\left\{{}\begin{matrix}2m+1=2\\2k-3=3k\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=1\\-k=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{2}\\k=-3\end{matrix}\right.\)