K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

Hoành độ giao điểm thỏa mãn pt 

\(\left(k-\frac{2}{3}\right)x+1=\left(2-k\right)x-3\)

\(\Leftrightarrow kx-\frac{2}{3}x+1=2x-xk-3\Leftrightarrow2xk-\frac{8}{3}x+4=0\)

Thay x = 4 vào pt trên ta được : 

\(8k-\frac{32}{3}+4=0\Leftrightarrow k=\frac{5}{6}\)

NM
9 tháng 12 2020

với x=-3 ta có tung độ tương ứng của đường thẳng thứ nhất là : 

\(y_1=\left(5k+2\right).\left(-3\right)-3=-15k-9\)

tương tự ta có \(y_2=\left(3k-2\right).\left(-3\right)+2=-9k+8\)

để hai đường thẳng cắt nhau tại điểm có hoành độ bằng -3 thì

\(y_1=y_2\Leftrightarrow-15k-9=-9k+8\Leftrightarrow k=-\frac{17}{6}\)

NV
11 tháng 8 2021

Tọa độ giao điểm của \(y=-2x+k\) và trục hoành: \(y=0\Rightarrow x=\dfrac{k}{2}\)

Tọa độ giao điểm \(y=-2x+k\) với trục tung: \(x=0\Rightarrow y=k\)

Tọa độ giao điểm của \(y=3x-k+4\) với trục hoành: \(y=0\Rightarrow x=\dfrac{k-4}{3}\)

Tọa độ giao điểm của \(y=3x-k+4\) với trục tung: \(x=0\Rightarrow y=-k+4\)

a. Đồ thị các hàm cắt nhau tại 1 điểm trên trục tung khi:

\(k=-k+4\Rightarrow x=2\)

b. Đồ thị các hàm cắt nhau tại 1 điểm trên trục hoành khi:

\(\dfrac{k}{2}=\dfrac{k-4}{3}\Rightarrow k=-8\)

16 tháng 11 2021

vẽ đồ thị hàm số y=/x/+4x . Với giá trị nào của k thì hàm số y=k cắt đồ thị hàm số trên tại hai điểm phân biệt

23 tháng 11 2018

a, 2 đường thẳng // với nhau khi

\(\hept{\begin{cases}k+3=5-k\\2\ne3\end{cases}\Leftrightarrow k=1}\)

b, 2 đường thẳng cắt nhau khi

\(k+3\ne5-k\Leftrightarrow k\ne1\)

c, 2 đường thẳng trên ko thể trùng nhau được vì hệ số tự do 2 \(\ne\)3

24 tháng 7 2020

Hàm số y = ( k + 1) x + 3 có các hệ số a = k + 1, b = 3

Hàm số y = ( 3 – 2k ) x + 1 có các hệ số a' = 3 - 2k, b' = 1

Hai hàm số là hàm số bậc nhất nên a và a' khác 0, tức là :

\(k+1\ne0\)và \(3-2k\ne0\)hay \(k\ne-1\)và \(k\ne\frac{3}{2}\)( * )

b) Hai đường thẳng y = ( k + 1 ) x + 3 và y = ( 3 – 2k ) x + 1 là hàm số bậc nhất nên \(a\ne0\) và \(a'\ne0\) Hai đường thẳng này cắt nhau khi \(a\ne a'\) tức là :

\(\hept{\begin{cases}k+1\ne0\\3-2k\ne\\k+1\ne3-2k\end{cases}0}\Leftrightarrow\hept{\begin{cases}k\ne-1\\2k\ne\\3k\ne2\end{cases}3}\Leftrightarrow\hept{\begin{cases}k\ne-1\\k\ne\\k\ne\frac{2}{3}\end{cases}\frac{3}{2}}\)

Với \(k\ne-1 ; k\ne\frac{3}{2} ; k\ne\frac{2}{3}\)   thì đồ thị của hai hàm số trên là hai đường thẳng cắt nhau.

c) Do  \(b\ne b'\) ( vì \(3\ne1\)  ) nên hai đường thẳng không thể trùng nhau với mọi giá trị k.

20 tháng 4 2019

Hàm số y = ( k + 1)x + 3 có các hệ số a = k + 1, b = 3

Hàm số y = (3 – 2k)x + 1 có các hệ số a' = 3 - 2k, b' = 1

Hai hàm số là hàm số bậc nhất nên a và a' khác 0, tức là:

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo đề bài ta có b ≠ b' (vì 3 ≠ 1)

Nên hai đường thẳng y = (k + 1)x + 3 và y = (3 – 2k)x + 1 song song với nhau khi a = a'

tức là: k + 1 = 3 – 2k

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hai đường thẳng y = (k + 1)x + 3 và y = (3 – 2k)x + 1 là hàm số bậc nhất nên a ≠ 0 và a' ≠ 0. Hai đường thẳng này cắt nhau khi a ≠ a' tức là:

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy với Để học tốt Toán 9 | Giải bài tập Toán 9 thì đồ thị của hai hàm số trên là hai đường thẳng cắt nhau.

c) Do b ≠ b' (vì 3 ≠ 1) nên hai đường thẳng không thể trùng nhau với mọi giá trị k.

4 tháng 12 2021

Hay

30 tháng 7 2019

b) Đồ thị hai hàm số y = (k + 3)x – 2 và y = (5 – k)x + 3 cắt nhau khi và chỉ khi:

k + 3 ≠ 5 - k ⇔ k ≠ 1

Kết hợp điều kiện với k ≠ 1; k ≠ -3 và k ≠ 5 thì đồ thị của hai hàm số đã cho cắt nhau.