Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
Chú ý: Kí hiệu * là độ
-Vì OM là tia phân giác của góc AOB nên
góc AOM = góc MOB = \(\frac{gócAOB}{2}\) (1)
-Vì ON là tia phân giá của góc BOC nên
góc BON = góc NOC = \(\frac{gócBOC}{2}\) (2)
-Ta có góc AOB + góc BOC = 180* (vì kề bù)
Do đó: \(\frac{gócAOB}{2}+\frac{gócBOC}{2}=\frac{180}{2}\)= 90* (3)
Từ (1), (2) và (3) suy ra góc MON = 90* (hay ON vuông góc với OM)
-Vì đường thẳng a đi qua D và vuông góc với OM nên góc D = 90*
-Ta có góc MON = góc D (=90*) mà chúng đang ở vị trí đồng vị
Suy ra a // ON
Ta có: Om là tia phân giác của góc AOC => AOm = COm = AOC : 2 (1)
Ta có: COm + COn = mOn
=> COm + COn = 900
Mà: AOm = COm ( chứng minh (1) )
=> AOm + COn = 900 (2)
Ta có: AOm + mOn + BOn = AOB
=> AOm + 900 + BOn = 1800
=> AOm + BOn = 1800 - 900
=> AOm + BOn = 900 (3)
Từ (2) và (3) => COn = BOn
Mà On nằm giữa 2 tia OC và OB
=> On là tia phân giác của góc BOC
Vậy On là tia phân giác của góc BOC
Chuk bn hk tốt!