Cho hai đường tròn (O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để (O;3,5cm) và (O';4,5cm) tiếp xúc ngoài thì OO'=R+R'

=>O'O=3,5+4,5=8(cm)

25 tháng 8 2024

trả lời rỏ hơn được không

 

10 tháng 5 2021

TL: x2+\(\frac{m}{2}\)x+\(\frac{1}{2}\)

10 tháng 5 2021

Gọi x1,x2x1,x2 là nghiệm của x2−mx−2=0(1)x2−mx−2=0(1) 

→{x1+x2=mx1x2=−2→{x1+x2=mx1x2=−2

→⎧⎪ ⎪⎨⎪ ⎪⎩1x1+1x2=x1+x2x1x2=−m21x1.1x2=−12→{1x1+1x2=x1+x2x1x2=−m21x1.1x2=−12

→1x1,1x2→1x1,1x2 là nghiệm của phương trình 
x2+m2x−12=0

NM
27 tháng 8 2021

undefined

ta có :

\(\widehat{OAB}+\widehat{O'AC}=90^o\Rightarrow\hept{\begin{cases}AC=2AO\cos\widehat{OAC}\\AB=2AO'\cos\widehat{O'AB}=2AO'\sin\widehat{OAC}\end{cases}}\)

ta có : \(S_{ABC}=\frac{1}{2}AB.AC=2OA.O'A.\sin\widehat{OAC}.cos\widehat{OAC}\le OA.O'A\left(\sin^2\widehat{OAC}+cos^2\widehat{OAC}\right)=OA.OA'\)

dấu bằng xảy ra khi \(\sin\widehat{OAC}=cos\widehat{OAC}\Rightarrow\widehat{OAC}=45^o\)

từ đó ta xác định được vị trí của B và C

Mình da xem roi rat hay cam on ban.

14 tháng 9 2021

a, Thay x = - 1 vảo pt trên ta được : \(1-2\left(m+1\right)+m^2-3m=0\)

\(\Leftrightarrow m^2-3m-2m-2+1=0\Leftrightarrow m^2-5m-1=0\) 

\(\Delta=25-4\left(-1\right)=29>0\)

\(m_1=\frac{5-\sqrt{29}}{2};m_2=\frac{5+\sqrt{29}}{2}\)

b, Để phương trình có 2 nghiệm phân biệt : \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=m^2+2m+1-m^2+3m=5m-1>0\Leftrightarrow m>\frac{1}{5}\)

c, Để phương trình có nghiệm duy nhất khi \(5m-1=0\Leftrightarrow m=\frac{1}{5}\)

14 tháng 12 2021

a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm 

=> ^SAO = 900 hay tam giác SAO vuông tại A

Theo định lí Pytago tam giác SAO ta có : 

\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm 

b, Xét tam giác SAO vuông tại A, AH là đường cao 

Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm 

Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm 

c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau ) 

AO = BO = R 

Vậy SO là đường trung trực đoạn AB 

mà AH vuông SO => HB vuông SO 

=> A;H;B thẳng hàng