K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

O O E B A 1 2 M J C F I x K N

a) Gọi AM cắt (O2) tại N khác M. Khi đó: Dễ thấy: ^MFE=^MNE = ^MO2E/2 = ^MO1J/2 = ^MAJ

=> ^MFI = ^MCI (Do ^MAJ = ^MCI) => Tứ giác MCFI nội tiếp => ^JAM = ^MCI = ^MFI = ^MEB hay ^JAM = ^JEA

Từ đó: \(\Delta\)JAM ~ \(\Delta\)JEA (g.g) => JA2 = JM.JE (1)

Ta có: ^JIM = ^CIM = ^CFM = ^FEM => \(\Delta\)JIM ~ \(\Delta\)JEI (g.g) => IJ2 = JM.JE (2)

Từ (1);(2) suy ra: JA2 = IJ2 = JM.JE => \(JA=IJ=\sqrt{JM.JE}\) (đpcm).

b) Gọi Cx là tia đối tia CA. Ta có đẳng thức về góc: ^ICx = ^JCA = ^JMA = ^JAB (Vì \(\Delta\)JAM ~ \(\Delta\)JEA)

=> ^ICx = ^JAB = ^ICB => CI là tia phân giác ^BCx hay CI là tia phân giác ngoài tại C của \(\Delta\)ABC (đpcm).

c) Ta thấy: \(\Delta\)IKC ~ \(\Delta\)IJA, JA = JI (cmt) => KI = KC (3)

Theo câu b thì ^JAB = ^JCA = ^JBA => \(\Delta\)ABJ cân tại J => JA = JB = JI => \(\Delta\)IJB cân tại J

=> ^CBI = ^JBI - ^JBC = (1800 - ^IJB)/2 - ^JBC = (1800 - ^IJB - 2.^JBC)/2 = (1800 - ^BAJ - ^JBC)/2

= (^ACB + ^JBA - ^JAC)/2 = (^ACB + ^BAC)/2 => BI là phân giác ^CBE.

Từ đó I là tâm bàng tiếp ứng đỉnh A của \(\Delta\)ABC => AI là phân giác ^BAC

Do vậy, K là điểm chính giữa cung BC không chứa A của (O1) => KC = KB (4)

Từ (3);(4) suy ra: KB = KC = KI => K là tâm ngoại tiếp \(\Delta\)BCI (đpcm).

23 tháng 12 2018

A N M D E F G L P Q T H K I I J J 1 2 1 2

a) Xét đường tròn (J1) có: ^HJ1D = 2.^HMD (^HMD=1/2.Sđ(HD ). Tương tự: ^KJ2D = 2.^KND

Dễ thấy tứ giác MEFN nội tiếp (Do ^MEN = ^MFN) => ^DMH = ^DNK (2 góc nội tiếp cùng chắn cung EF)

Do đó: ^HJ1D = ^KJ2D. Mà các tam giác HJ1D và KJ2D cân tại J1 và J2 => ^J2DK + 1/2.^HJ1D = 900

Hay ^J2DK + ^HMD = 900 => J2D vuông góc EM. Có J1H vuông góc EM => J2D // J1H

=> ^J1DJ2 = ^HJ1D (So le trong) => ^HDK = ^J1DJ2 + ^J1DH + ^J2DK = ^HJ1D + ^J1DH + ^J1HD = 1800

=> 3 điểm K,H,D thẳng hàng. Lại có: ^AHD = 1/2.Sđ(HD;  ^AKD = 1/2.Sđ(KD => ^AHD = ^AKD

Từ đó: ^AHK = ^AKH => \(\Delta\)HAK cân tại A => AH=AK

Gọi giao điểm của tia AD với (I1) và (J1) lần lượt là P' và Q'. Ta sẽ chứng minh P' trùng P; Q' trùng Q.

Theo hệ thức lượng trong đường tròn: AH2 = AD.AQ' => AK2 = AD.AQ' => \(\Delta\)ADK ~ \(\Delta\)AKQ' (c.g.c)

=> ^AKD = ^AQ'K = 1/2.Sđ(DK => Điểm Q' nằm trên (J2) => Q' trùng Q (1)

Tương tự: AE.AM = AD.AP'; AE.AM = AF.AN => AF.AN = AD.AP' => \(\Delta\)ADF ~ \(\Delta\)ANP' (c.g.c)

=> ^ADF = ^ANP' => Tứ giác DFNP' nột tiếp => Điểm P' thuộc (DFN) hay P' thuộc (I2) => P' trùng P (2)

Từ (1) và (2) => Tia AD đi qua 2 điểm P và Q hay 3 điểm D,P,Q thẳng hàng (đpcm).

b) Định trên đoạn thẳng EF một điểm T thỏa mãn \(\frac{ET}{FT}=\frac{HD}{KD}\)

Ta thấy ^GEA = ^GFA => ^GEH = ^GFK. Kết hợp với ^GHE = ^GKF => \(\Delta\)GEH ~ \(\Delta\)GFK (g.g)

=> \(\frac{GE}{GH}=\frac{GF}{GK}\). Lại có: ^EGF = ^EAF = ^HGK (Các góc nội tiếp) => \(\Delta\)GEF ~ \(\Delta\)GHK (c.g.c)

Do T và D định trên các cạnh EF, HK các tỉ số tương ứng bằng nhau nên \(\Delta\)GTF ~ \(\Delta\)GDK (c.g.c)

=> \(\frac{GT}{GD}=\frac{GF}{GK}\). Nhưng ^TGD = ^FGK (=^TGF - ^TGK) nên \(\Delta\)GTD ~ \(\Delta\)GFK (c.g.c) 

=> ^GDT = ^GKF. Mà ^GKF = ^GQD => ^GDT = ^GQD = 1/2.Sđ(GD => DT là tia tiếp tuyến của đường tròn (DGQ) (3)

Mặt khác:^GLE = ^GFE = ^GKH = ^GQH. Dễ thấy: \(\Delta\)LEF ~ \(\Delta\)QHK. Từ \(\frac{ET}{FT}=\frac{HD}{KD}\)=> \(\Delta\)ELT ~ \(\Delta\)HQD

=> ^ELT = ^HQD => ^ELT - ^GLE = ^HQD - ^GQH => ^GLT = ^GQD. Mà ^GQD = ^GDT (cmt) nên ^GLT = ^GDT 

Từ đó có: Tứ giác GDLT nội tiếp hay điểm T nằm trên đường tròn (DLG)   (4)

Qua (3) và (4) suy ra: Tiếp tuyến tại D của đường tròn (DGQ) cắt EF tại điểm T nằm trên đường tròn (DLG) (đpcm).

Cho đường tròn (O) có dây cung BC khác đường kính. Trên (O) lấy điểm A sao cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường kính AA1 của (O). Gọi K là giao điểm thứ hai của đường thẳng AH và (O). 1. C/ m D là trung điểm củ HK2. Lấy điểm P đối xứng với điểm K qua đường thẳng AB. Chứng minh tứ giác AHBP nội tiếp được đường tròn 3. Gọi M là trung điểm của BC, Q...
Đọc tiếp

Cho đường tròn (O) có dây cung BC khác đường kính. Trên (O) lấy điểm A sao cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Vẽ đường kính AA1 của (O). Gọi K là giao điểm thứ hai của đường thẳng AH và (O). 

1. C/ m D là trung điểm củ HK

2. Lấy điểm P đối xứng với điểm K qua đường thẳng AB. Chứng minh tứ giác AHBP nội tiếp được đường tròn 

3. Gọi M là trung điểm của BC, Q là giao điểm của (O) và tia MH. Gọi T là giao điểm của đường thẳng QD và (O). C/m BT.AC=AB.CT

4. Kẻ đường kính A1A2 của đường tròn ngoại tiếp tam giác A1EF. CMR khi BC cố định, điểm A thay đổi trên (O) sao cho tam giác ABC nhọn (không cân tại A) thì đường thẳng A2H luôn đi qua một điểm cố định

Giúp mình hai câu cuối với!

0
28 tháng 2 2019

C C C I E F A B 1 2 3 x M N D G y

a) Gọi Ax là tia tiếp tuyến chung của (C1) và (C2), AF cắt (C2) tại G khác A.

Ta có: ^GAx = ^GMA, ^FAx = ^FEA => ^GMA = ^FEA => GM // EF. Mà EF là tiếp tuyến tại I của (C2)

Nên C2I vuông góc GM. Do GM là dây cung của (C2) nên I là điểm chính giữa cung nhỏ GM

=> AI là phân giác của ^GAM hay AI là phân giác của ^FAE => \(\frac{AF}{AE}=\frac{IF}{IE}\) 

Tương tự: \(\frac{BF}{BE}=\frac{IF}{IE}\). Từ đó: \(\frac{AF}{AE}=\frac{BF}{BE}\Rightarrow AF.BE=AE.BF\)

Áp dụng ĐL Ptolemy vào tứ giác AEBF nội tiếp có: \(AF.BE+AE.BF=AB.EF\)

Hay \(2AE.BF=2AB.ED\). Suy ra: \(\frac{AE}{AB}=\frac{ED}{BF}\) kết hợp với ^AED = ^ABF (Cùng chắn cung AF)

=> \(\Delta\)ADE ~  \(\Delta\)AFB (c.g.c) => ^DAE = ^FAB. Mà ^IAE = ^IAF (cmt) => ^IAD = ^IAB

=> AI là phân giác ^BAD (1)

Cũng từ \(\Delta\)ADE ~ \(\Delta\)AFB =>\(\frac{AD}{AE}=\frac{AF}{AB}\); ^FAD = ^BAE => \(\Delta\)ADF ~ \(\Delta\)AEB (c.g.c)

=> ^ADF = ^AEB hay ^ADI = ^AEB. Tương tự: ^BDI = ^AEB => ^ADI = ^BDI => DI là phân giác ^ADB (2)

Từ (1);(2) suy ra: Điểm I là tâm nội tiếp \(\Delta\)ABD (đpcm).

b) Gọi My là tia đối của MN ta có ^AMy = ^EMN (3)

Ta thấy: IE là tiếp tuyến chung của (C2);(C3) => EM.EA = EN.EB (=EI2) => Tứ giác AMNB nội tiếp

=> ^EMN = ^EBA = ^EFA = ^MGA (Do GM // EF) (4)

Từ (3);(4) suy ra: ^MGA = ^AMy = 1/2.Sđ(AM => My là tia tiếp tuyến của (C2) hay MN là tiếp tuyến của (C2)

Hoàn toàn tương tự: MN cũng là tiếp tuyến của (C3). Từ đó: MN là tiếp tuyến chung của (C2) và (C3) (đpcm).

14 tháng 4 2019

A B C O O D P G E H F O 1 2 3 K

Gọi DA cắt (O3( tại G khác A, GP cắt FD tại K. Giao điểm thứ hai của BD và (BAF) là H.

Ta có ^APG = ^AEG = ^AFK => Tứ giác APKF nội tiếp => K thuộc (BAF)

Dễ thấy: ^AFK = ^AED = ^ABH = ^AFH => (AK(BAF) = (AH(BAF) => ^KBA = ^HFE.

Chứng minh được \(\Delta\)FDE ~ \(\Delta\)ADB (g.g) suy ra \(\frac{AB}{FE}=\frac{AD}{DF}=\frac{BD}{DF}=\frac{BK}{FH}\)

Từ đây có \(\Delta\)AKB ~ \(\Delta\)EHF (c.g.c) cho nên ^BAK = ^FEH = ^BFK. Do ^AFK = ^AED nên ^AFB = ^DEH

Kết hợp với ^HDE = 1800 - ^BDE = 1800 - ^BAE = ^BAF dẫn đến \(\Delta\)DEH ~ \(\Delta\)AFB (g.g)

=> \(\frac{HE}{BF}=\frac{DE}{AF}\). Lại có \(\Delta\)DGE ~ \(\Delta\)ACF (g.g) => \(\frac{DE}{AF}=\frac{GE}{CF}\). Suy ra \(\frac{HE}{BF}=\frac{GE}{CF}\)(*)

Mặt khác ta có biến đổi góc ^GEH = ^GED - ^DEH = ^AFC - ^AFB = ^CFB. Từ đó kết hợp với (*) ta thu được:

\(\Delta\)EGH ~ \(\Delta\)FCB (c.g.c) => ^EGH = ^FCB. Mà ^EGD = ^ACF nên ^DGH = ^ACB.

Khi đó dễ dàng chỉ ra \(\Delta\)ABC ~ \(\Delta\)DGH (g.g) => \(\Delta\)DGH cân tại D => ^DGH = ^DHG

Ta thấy ^DGP = ^BAP = ^DGH => Tứ giác PGHD nội tiếp. Từ đây ^DPK = ^DHG = ^DGH = ^DPH

Do đó PD là phân giác ^KPH. Chú ý ^APG = ^AEG = ^AFD = ^ABH = ^APH => PA là phân giác ^HPG

Mà ^KPH và ^HPG kề bù nên PA vuông góc PD hay ^APD = 900 (đpcm).

30 tháng 9 2019

tớ xin chúc mừng nguyễn tất đạt nhá