K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tứ giác ADME là hình chữ nhật và ID = IE (chứng minh trên) nên đường chéo AM của hình chữ nhật phải đi qua trung điểm I của DE. Suy ra: A, I, M thẳng hàng.

Ta có: IA ⊥ OO’ (vì IA là tiếp tuyến của (O))

Suy ra: AM ⊥ OO’

Vậy MA là tiếp tuyến chung của đường tròn (O) và (O’)

a: Kẻ tiếp tuyến chung AH của (O) và (O'). (H thuộc DE)

Xét (O) có

HA,HD là tiếp tuyến

nên HO là phân giác của góc DHA(1) và HD=HA

mà OD=OA

nên OH là trung trực của AD

=>OH vuông góc với AD tại K

Xét (O') có

HA,HE là tiếp tuyến

nên HA=HE và HO' là phân giác của góc AHE(2)

mà O'A=O'E

nên O'H là trung trực của AE

=>O'H vuông góc với AE tại G

Từ (1), (2) suy ra góc OHO'=1/2*180=90 độ

Xét tứ giác HKAG có

góc KHG=góc HKA=góc HGA=90 độ

nên HKAG là hình chữ nhật

=>góc DAE=90 độ

b: Xét (O) có

ΔBAD nội tiếp

BA là đường kính

=>ΔBAD vuông tại D

=>góc MDA=90 độ

Xét (O') có

ΔAEC nội tiếp

AC là đường kính

=>ΔAEC vuông tại E

=>góc MEA=90 độ

Xét tứ giác MDAE có

góc MDA=góc MEA=góc DAE=90 độ

nên MDAE là hình chữ nhật

17 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: IA = ID = IE (chứng minh trên)

Suy ra A nằm trên đường tròn tâm I đường kính DE

Vì OO’ ⊥ IA tại A nên OO’ là tiếp tuyến của đường tròn (I; DE/2)

28 tháng 8 2019

Đường tròn có đường kính BC có tâm M, bán kính MA.OO' vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).