K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 3 2020
x D F E K A O I B C O'
a) Ta có: AIBC nội tiếp ( O')
=> ^BAC = ^BIC (1)
ABDE nội tiếp ( O) có CA là tiếp tuyến
=> ^CAB = ^ADB ( cùng chắn cung AB ) (2)
Từ (1) ; (2) => ^ADB = ^BIC => ^KDB = ^CIB => B; I; K; D nội tiếp => ^KBD = ^KID
mà ^KBD = ^EBD = ^EAD = FAD
=> ^FAD = ^KID = ^FID
=> FAID nội tiếp
b) Kéo dài tia FD ------> tia Fx
FAID nội tiếp => ^DFI = ^DAI
I; A: C; B nội tiếp ( O') => ^IAB = ^ICB
=> ^DFI + ^ICB = ^DAI + ^IAB
Mà ^xDC = ^DFC + ^DCF = ^DFI + ^ICB
^DAB = ^DAI + ^IAB
=> ^xDC = ^DAB => ^xDB = ^DAB
=> Dx là tiếp tuyến ( O)
=> DF là tiếp tuyến ( O)
a) Có góc BAD =BOD ( vì cùng chắn cung BD) (*)
Lại có BAD cũng là góc nt chắn cung BC và góc BOC là góc ở tâm chắn cung BC
=> BAC =1/2 BOC
Từ (*) => BOD=1/2 BOC
=> BOD =COD ( vì cùng =1/2 BOC )
=>OD là tia p/g của góc BOC
mà tam giác BOC cân tại O
=> OD là tia p/g đồng thời cũng là đường cao của tam giác BOC
=> OD vuông góc BD (đpcm)
a)Xét đt O có :
ΔOBC cân tại O (OB=OC bk đt O)
Có góc BOD chắn cung BD
Mà góc BAD cùng chắn cung BD
⇒góc BOD=góc BAD=góc BAC
Má góc BAC chắn cung BC
⇒BAC=\(\dfrac{1}{2}\)cung BC
mà BOC = cung BC (cung chắn tâm)
⇒BOD=BAC=\(\dfrac{1}{2}\)BOD
b)Trong đt O',FAB=\(\dfrac{1}{2}\)FOB(góc nội tiếp=nửa góc ở tâm cùng chắn một cung)
Có EAB=EOB(cùng chắn cung EB)
⇒FAB=\(\dfrac{1}{2}\)EAB⇒AF là p|g EAB
cmtt⇒BF là p|g EBA
⇒F LÀ GIAO 3 ĐƯỜNG P|G EAB
⇒ Điểm F cách đều ba cạnh của tam giác ABE