Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có
ΔABD nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét (O) có
ΔODC nội tiếp
OC là đường kính
Do đó: ΔODC vuông tại D
Ta có: \(\hat{ADO}+\hat{\left.ODB\right.}=\hat{ADB}=90^0\)
\(\hat{CDB}+\hat{ODB}=\hat{ODC}=90^0\)
Do đó: \(\hat{ADO}=\hat{CDB}\)
Xét ΔOBD có OB=OD=BD(=R)
nên ΔOBD đều
=>\(\hat{ODB}=60^0\)
Ta có: \(\hat{ODB}+\hat{ODA}=\hat{ADB}\) (tia DO nằm giữa hai tai DA và DB)
=>\(\hat{ODA}=90^0-60^0=30^0\)
\(\hat{ADC}=\hat{ADO}+\hat{ODC}=30^0+90^0=120^0\)
Bước 1: Hình dạng và tính chất ban đầu
Vì \(A B\) là đường kính của \(\left(\right. O \left.\right)\) nên \(\angle A D B = 90^{\circ}\) (góc nội tiếp chắn nửa đường tròn).
Đường tròn tâm \(B\) bán kính \(R\) nghĩa là \(O B = A B = R\), vậy \(O\) và \(C\) đều nằm trên đường tròn này.

tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha

ta có :
\(\widehat{OAB}+\widehat{O'AC}=90^o\Rightarrow\hept{\begin{cases}AC=2AO\cos\widehat{OAC}\\AB=2AO'\cos\widehat{O'AB}=2AO'\sin\widehat{OAC}\end{cases}}\)
ta có : \(S_{ABC}=\frac{1}{2}AB.AC=2OA.O'A.\sin\widehat{OAC}.cos\widehat{OAC}\le OA.O'A\left(\sin^2\widehat{OAC}+cos^2\widehat{OAC}\right)=OA.OA'\)
dấu bằng xảy ra khi \(\sin\widehat{OAC}=cos\widehat{OAC}\Rightarrow\widehat{OAC}=45^o\)
từ đó ta xác định được vị trí của B và C
Chọn đáp án C
Hai đường tròn (O; R) và (O'; r)(R > r) cắt nhau
Khi đó (O) và (O') có hai điểm chung và đường tròn nối tâm là đường trung trực của đoạn AB
Hệ thức liên hệ R - r < OO' < R + r