Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là giao điểm của AD và BC; H là giao điểm của MN và AB
Chứng minh góc AHM= 90; mà góc CAB 45(gt) nên tam giác AHM vuông cân
=>MH = AH
=>MH + HB = AH + HB = 2R (1)
* Tam giác MHB vuông tại H
HB = MB.cos MBH => MB= \(\frac{HB}{sosMBH}\)=\(\frac{HB}{cos60^0}\)=2HB
MH = MB. sin MBH => MH= MB. sin60=\(\frac{MB\sqrt{3}}{2}=HB\sqrt{3}\)
=> \(HB=\frac{MH}{\sqrt{3}}=\frac{\sqrt{3}MH}{3}\) (2)
Từ (1) và (2) ta có \(MH+\frac{\sqrt{3}MH}{3}=2R\Rightarrow MH=\frac{6R}{3+\sqrt{3}}=\left(3-\sqrt{3}\right)R\)
Vậy \(S=\frac{AB.MH}{2}=\frac{1}{2}.2R\left(3-\sqrt{3}\right)R=\left(3-\sqrt{3}\right)R^2\)
cảm ơn bạn, mình còn rất nhiều bt vì mình đang ôn đội tuyển, mong đc các bạn giúp đỡ
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .
Gọi I là giao của OO' với AB
Ta có
OA=O'A=OB=O'B=R => OAO'B là hình thoi (Tứ giác có 4 cạnh bằng nhau là hình thoi)
\(\Rightarrow AB\perp OO'\)(trong hình thoi 2 đường chéo vuông góc)
Ta có OO'=R => OI=OO'/2=R/2 (trong hình thoi hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tg vuông AOI có
\(AI=\sqrt{OA^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\frac{R\sqrt{3}}{2}=\frac{AB}{2}\Rightarrow AB=R\sqrt{3}\)
\(\Rightarrow S_{OAO'B}=\frac{OO'.AB}{2}=\frac{R.R\sqrt{3}}{2}=\frac{R^2\sqrt{3}}{2}\)