Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giao điểm của 2 đường thẳng thuộc trục hoành nên có dạng $(a,0)$. Vì điểm này thuộc $(d_1):x+y=-1$ nên $a+0=-1\Rightarrow a=-1$
Vậy giao điểm của 2 ĐT trên là $(-1,0)$
Giao điểm này $\in (d_2)$ khi mà $m.(-1)+0=1$
$\Leftrightarrow m=-1$
Làm
Để (d1) và (d2)
a, (d1) và (d2) cắt nhau thì a\(\ne a'\) \(\Leftrightarrow3\ne m-1\Leftrightarrow m\ne4\)
Giả sử A là điểm mà (d1) và (d2) cắt nhau trên Ox thì A(x';0)
\(\Rightarrow\) 0= 3x' -1 \(\Leftrightarrow x'=\frac{1}{3}\)
Thay x' = \(\frac{1}{3}\) và y' =0 vào (d2) ta có:
0=(m-1)\(\frac{1}{3}+2\)
\(\Leftrightarrow m=-5\left(tm\right)\)
Kl:...
b, Giả sử (d1) và (d2) cắt nhau tại B thuộc góc phần tư thứ 1 thì B(x';y') với x',y'>0
\(\Rightarrow y'=3x'-1=\left(m-1\right)x'+2\)
\(\Leftrightarrow x'\left(4-m\right)=3\Leftrightarrow x'=\frac{3}{4-m}\left(v\text{ì}m\ne4\right)\)
\(\Rightarrow y'=\frac{m+5}{4-m}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3}{4-m}>0\\\frac{m+5}{4-m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m+5>0\end{matrix}\right.\Leftrightarrow-5< m< 4\left(tm\right)\)
Kl:.....
a) Giả sử d1 trùng d2 => có m để
=>\(\int^{2m-3=m}_{m^2-1=-2m-4}\Leftrightarrow\int^{m=3}_{m^2+2m+3=0\left(vônghiem\right)}\)
=> d1 khong trùng với d2
b)
+d1//d2 => m=3
+d1 cắt d2 => m\(\ne\)3
+d1 vuông góc d2 => m(2m-3) =-1 => 2m2 -3m +1 =0 => m =1 ; m = 1/2