Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Số tam giác được tạo bởi 2 đỉnh trên d1 và 1 đỉnh trên d2 là: C 6 2 . C 4 1 = 60 . Số tam giác được tạo bởi 1 đỉnh trên d1 và 2 đỉnh trên d2 là: C 6 1 . C 4 2 = 36 . Do đó số tam giác được tạo thành là: 60 + 36 = 96. Xác suất cần tìm là: 60 96 = 5 8 .
Đáp án D
Lấy 2 đinh tô màu đỏ trong 6 điểm có C 6 2 cách
Lấy 1 đỉnh tô màu xanh trong 4 điểm có cách
Suy ra số tam giác tạo thành có 2 đỉnh tô màu đỏ là
C 6 2 . C 4 1 = 60
Vậy xác suất cần tính là
Chọn đáp án D
Lấy 2 đỉnh tô màu đỏ trong 6 điểm có C 6 2 cách.
Lấy 1 đỉnh tô màu xanh trong 4 điểm có cách.
Suy ra số tam giác tạo thành có 2 đỉnh tô màu đỏ là C 6 2 C 4 1 = 60
Vậy xác suất cần tính là
Chọn C
* Số tam giác có 2 đỉnh thuộc d 1 và 1 đỉnh thuộc d 2 là: .
* Số tam giác có 1 đỉnh thuộc d 1 và 2 đỉnh thuộc d 2 là: .
Vậy có 70 + 105 = 175 tam giác.
Đáp án D
Dễ có số cách chọn 3 điểm từ 11 điểm đã cho là : C 11 3 = 165
Để 3 điểm được chọn tạo thành một tam giác thì phải thỏa mãn 3 điểm đó không thẳng hàng. Do đó có hai trường hợp xảy ra :
- Thứ nhất có hai điểm trên đường thẳng a và một điểm trên đường thẳng b
- Thứ hai có một điểm trên đường thẳng a và hai điểm trên đường thẳng b
Từ đây suy ra số cách chọn 3 điểm để tạo thành một tam giác là : C 6 2 C 5 1 + C 6 1 C 5 2 = 135
Vậy xác suất cần tìm là 135 165 = 9 11 . => Chọn đáp án D.
Xét 2 trường hợp:
Th1: 1 điểm trên d1, 2 điểm trên d2
Chọn 1 điểm trên d1 có \(C_{17}^1\) (cách)
Chọn 2 điểm trên d2 có \(C^2_{20}\) (cách)
\(\Rightarrow C^1_{17}.C^2_{20}\) (tam giác)
Th2: 1 điểm trên d2, 2 điểm trên d1
Chọn 1 điểm trên d2 \(C^1_{20}\left(cach\right)\)
Chọn 2 điểm trên d1 \(C^2_{17}\left(cach\right)\)
\(\Rightarrow C^1_{20}.C^2_{17}\left(tam-giac\right)\)
\(\Rightarrow C^1_{17}.C^2_{20}+C^2_{17}.C^1_{20}=...\left(tam-giac\right)\)
Đáp án là C
Một tam giác được tạo bởi ba điểm phân biệt nên ta xét:
TH1. Chọn 1 điểm thuộc d 1 và 2 điểm thuộc d 2 : có c 17 1 . c 20 1 tam giác.
TH2. Chọn 2 điểm thuộc d 1 và 1 điểm thuộc d 2 : có c 17 2 . c 20 1 tam giác.
Như vậy, ta có C 17 1 . C 20 1 + C 17 2 . C 20 1 = 5950 tam giác cần tìm.
Đáp án B
Phương pháp: Xác suất của biến cố A là n A n Ω trong đó nA là số khả năng mà biến cố A có thể xảy ra, n Ω là tất cả các khả năng có thể xảy ra.
Một tam giác được tạo thành khi nối ba điểm không thẳng hàng bất kì với nhau.
Cách giải
Số tam giác được tạo thành khi nối các điểm đó với nhau là:
Gọi biến cố A: “Tam giác có hai đỉnh màu đỏ”.
Khi đó n A = C 6 2 . C 4 1 = 60