\(\hept{\begin{cases}\left(d_1\right):y=\left(m^2+3\right)x+m^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

ax8=18

25 tháng 7 2019

#)Giải :

1.\(\sqrt{m+2\sqrt{m-1}}-\sqrt{m-2\sqrt{m-1}}\)

\(=\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)

\(=\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)

\(=\sqrt{m-1}+1+\sqrt{m-1}-1\)

\(=2\sqrt{m-1}\)

7 tháng 8 2017

Toán lớp mấy

7 tháng 8 2017

toán tuổi thơ chắc chỉ cần đáp số thôi nhỉ

1. S={7;-5}

2. HPT có 2 nghiệm (x;y) là (2;-3) và (3/2;-7/2)

3. a=b=0

4. Dễ rồi

Đề mình tổng hợp cho các bạn thi hsg toán 9.+) Yêu cầu:Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?Ví dụ: Bài 1: Giải:....Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12Đề bài: Câu 1:a)...
Đọc tiếp

Đề mình tổng hợp cho các bạn thi hsg toán 9.

+) Yêu cầu:

Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?

Ví dụ: Bài 1: Giải:....

Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.

+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12

Đề bài: 

Câu 1:

a) Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\). Tính giá trị của biểu thức: \(A=x^5-4x^4+x^3-x^2-2x+2019\)

b) Cho \(x=\sqrt[3]{2+2\sqrt{3}}+\sqrt[3]{2-2\sqrt{3}}-1\). Tính giá trị biểu thức \(P=x^3\left(x^2+3x+9\right)^3\)

Câu 2:

a) Giải phương trình \(\frac{\left(x-4\right)\sqrt{x-2}-1}{\sqrt{4-x}+x-5}=\frac{2+\left(2x-4\right)\sqrt{x-2}}{x-1}\)

b) Giải hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{x+2}+\sqrt{x+3}=\sqrt{y-1}+\sqrt{y-2}+\sqrt{y-3}\\x^2+y^2=10\end{cases}}\)

Câu 3:

a) Cho hai đa thức \(f\left(x\right)=\frac{1}{x}+\frac{1}{x-2}+\frac{1}{x-4}+...+\frac{1}{x-2018}\)và \(g\left(x\right)=\frac{1}{x-1}+\frac{1}{x-3}+\frac{1}{x-5}+...+\frac{1}{x-2017}\)

Chứng minh rằng :\(\left|f\left(x\right)-g\left(x\right)\right|>2\)với x là các số nguyên thỏa mãn 0 < x < 2018

b) Cho m, n là hai số nguyên dương lẻ sao cho \(n^2-1\)chia hết cho \(\left|m^2-n^2+1\right|\). Chứng minh rằng \(\left|m^2-n^2+1\right|\)là số chính phương

c) Tìm nghiệm nguyên dương của phương trình \(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)với điều kiện x, y là các số nguyên tố

d) Chứng minh rằng phương trình \(x^{15}+y^{15}+z^{15}=19^{2003}+7^{2003}+9^{2003}\)không có nghiệm nguyên

Câu 4:

a) Cho điểm A cố định thuộc trên đường tròn (O; R). BC là dây cung của đường tròn (O; R), BC di động và tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Tiếp tuyến tại B, C của đường tròn (O) cắt nhau ở G. Gọi S là giao điểm của GD và EF. Chứng minh rằng đường thẳng SH luôn đi qua một điểm cố định.

b) Cho tam giác ABC vuông tại C, D là chân đường cao vẽ từ C. Cho X là điểm bất kì thuộc đoạn thẳng CD (X khác C và D). Cho K là điểm trên đoạn thẳng AX sao cho BK = BC. Tương tự L là điểm trên đoạn thẳng BX sao cho AL = AC. Cho M là giao điểm của AL và BK. Chứng minh rằng MK = ML

Câu 5:

a)  Cho a, b, c là các số thực dương thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng:\(8\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+9\ge10\left(a^2+b^2+c^2\right)\)

b) Cho tập hợp X = {0;1;2;...;14}. Gọi A là một tập hợp gồm 6 phần tử được lấy ra từ X. Chứng minh rằng trong các tập hợp con thực sự của A luôn tìm được hai tập có tổng các phần tử bằng nhau . (Tập hợp con thực sự của tập Y là tập con của Y khác tập rỗng và khác Y)

P/s: Đề bài tổng hợp có gì sai sót mong các bạn góp ý  và bổ sung  không cãi nhau; spam gây mất trật tự. 

12
1 tháng 9 2020

Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))

sol nhẹ vài bài

\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)

\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\) 

Khi đó \(z-y⋮x;z+y+3⋮x\)

Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\) 

Trường hợp này loại

Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)

Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)

\(\Rightarrow z< x+y\)

Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)

Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)

Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và  \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)

\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z

\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)

\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)

Vậy.............

1 tháng 9 2020

Bài 1 : Giải :

a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)

\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)

\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)

\(\Rightarrow x+1=x\sqrt[3]{2}\)

\(\Rightarrow\left(x+1\right)^3=2x^3\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)

\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)

\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)

\(=2020\)

P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))

NV
25 tháng 6 2020

Pt hoành độ giao điểm: \(x^2-mx-m-1=0\)

\(a-b+c=1+m-m-1=0\) nên pt có 2 nghiệm:

\(\left\{{}\begin{matrix}x_1=-1\\x_2=m+1\end{matrix}\right.\) để 2 nghiệm pb \(\Rightarrow-1\ne m+1\Rightarrow m\ne-2\)

\(\Rightarrow\left\{{}\begin{matrix}y_1=x_1^2=1\\y_2=x_2^2=m^2+2m+1\end{matrix}\right.\)

\(y_1+y_2>5\Leftrightarrow m^2+2m+2>5\)

\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)