Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt hoành độ giao điểm của (P) và (d) là \(mx^2=-3x+1\)\(\Leftrightarrow mx^2+3x-1=0\)(*)
pt (*) có \(\Delta=3^2-4.m.\left(-1\right)=4m+9\)
Vậy để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=4m+9>0\Leftrightarrow m>-\frac{9}{4}\Leftrightarrow\hept{\begin{cases}m>-\frac{9}{4}\\m\ne0\end{cases}}\)
Khi đó áp dụng định lí Vi-ét, ta có \(x_1x_2=-\frac{1}{m}\)
A và B nằm cùng phía với trục tung \(\Rightarrow x_1,x_2\)cùng dấu \(\Rightarrow x_1x_2>0\)\(\Rightarrow-\frac{1}{m}>0\)\(\Leftrightarrow\frac{1}{m}< 0\)\(\Leftrightarrow m< 0\)
Vậy để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn yêu cầu đề bài thì \(-\frac{9}{4}< m< 0\)
a) lần lượt cho x=-1, y=2 vào đường thẳng y=(m-2)x+n
ta có 2=-(m-2)+n
tương tự như vậy cho x=3, y=-4 ta có đường thẳng -4=(m-2)*3+n
sau đó cho 2 đường thẳng tương đương
suy ra m=0,5=1/2;
suy ra n=0,5=1/2
vậy m=0,5, n=0,5 thì (d) đi qua 2 điểm A(-1;2) và B(3;-4)
d) vì hai đương thẳng trùng nhau nên có a=a' , b=b'
mà a=m-2, b=n
a'=2 , b'=-3
suy ra m=4, n=-3
vậy m=4, n=-3 thì hai đường thẳng trùng nhau
c) vì hai đương thẳng cắt nhau có a#a', b=b'
mà a=m-2, b=n
a'=-1,5, b'=0,5
nên m-2 # -1,5
n=0,5
suy ra m # 0,5
n=0,5
vậy m # 0,5, n=0,5 thì hai đương thẳng cắt nhau
Lời giải:
PT hoành độ giao điểm giữa $(d)$ và $(d')$:
$(m-3)x+16-x-m^2=0$
$\Leftrightarrow (m-4)x+(16-m^2)=0(*)$
$d$ và $d'$ cắt nhau tại 1 điểm trên trục tung, tức là hoành độ của giao điểm đó là $x=0$
Điều này đồng nghĩa với $x=0$ là nghiệm của $(*)$
$\Rightarrow (m-4).0+16-m^2=0$
$\Leftrightarrow 16=m^2\Rightarrow m=\pm 4$
Nếu $m=4$ thì $(d)\equiv (d')$ nên loại. Vậy $m=-4$