Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi A là tọa độ giao điểm của (d1) và (d2)
Xét phương trình hoành độ giao điểm của d1 và d2
\(x+4=\frac{-1}{2}x+\frac{7}{4}\)
\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)
\(\Leftrightarrow4x+16=-2x+7\)
\(\Leftrightarrow6x=-9\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Thay x = -3/2 vào ( d1 ) ta được:
y = -3/2 + 4 = 5/2
Vậy tọa độ giao điểm của 2 đường thẳng là A (-3/2 ; 5/2 )
2.
a)
x y=3/4x-3 0 -3 0 4
0 y x -3 4 y=3/4x-3 B C H
b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O
\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)
\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)
\(\Leftrightarrow OH^2=\frac{144}{25}\)
\(\Leftrightarrow OH=\frac{12}{5}=2,4\)
Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4
Học tốt!!!
b: Tọa độ giao là:
-1/2x+5=1/3x+1 và y=1/3x+1
=>-5/6x=-4 và y=1/3x+1
=>x=4:5/6=4*6/5=24/5 và y=1/3*24/5+1=24/15+1=8/5+1=13/5
c: Vì (d3)//(d1) nên (d3): y=-1/2x+b
Thay y=2 vào (d2), ta được:
x/3+1=2
=>x=3
Thay x=3 và y=2 vào y=-1/2x+b, ta được:
b-3/2=2
=>b=7/2
d: Thay x=24/5 và y=13/5 vào (d4), ta được:
24/5(m-3)+m+1=13/5
=>24/5m-72/5+m+1=13/5
=>29/5m-67/5=13/5
=>29/5m=80/5
=>m=80/5:29/5=80/5*5/29=80/29
a) Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)
Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)
Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)
Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m
Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m
(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)
b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:
\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)
Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)
Vậy...........................
a/
hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình
\(x^2-\left(m-1\right)x-4=0\)
den ta = \(\left(m-1\right)^2+16>0\forall m\)
=> phương trình luôn có 2 nghiệm phân biệt với mọi m
b/
vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p )
=> \(y_1=x_1^2\)
\(y_2=x_2^2\)
theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)
ta có \(y_1+y_2=y_1.y_2\)
<=> \(x_1^2+x_2^2=x_1^2x_2^2\)
<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)
<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)
<=> \(m^2-2m+1+8-16=0\)
<=> \(m^2-2m-7=0\)
<=>\(\left(m-1\right)^2-8=0\)
<=> \(\left(m-1\right)^2=8\)
<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)
<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
CHÚC BẠN HỌC TỐT
Hoành độ giao điểm (P) và (d) là :
\(\frac{1}{2}x^2-\frac{1}{4}x-\frac{3}{2}=0\)\(\Leftrightarrow2x^2-x-6=0\)( a=2; b=-1; c=-6)
\(\Delta=b^2-4ac=\left(-1\right)^2-4.2.\left(-6\right)=49>0\)
Vậy pt có 1 no phân biệt:
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+7}{2\cdot2}=2\); \(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-7}{2.2}=-\frac{3}{2}\)
Khi \(x_1\)=2\(\Rightarrow y_1=\frac{1}{2}.2^2=2\Rightarrow A\left(2;2\right)\)
Khi \(x_2=-\frac{3}{2}\Rightarrow y_2=\frac{1}{2}.\left(-\frac{3}{2}\right)^2=\frac{9}{8}\)
Do đó: \(T=x_1+\frac{x_2}{y_1}+y_2=2+\left(\frac{-\frac{3}{2}}{2}\right)+\frac{9}{8}=\frac{19}{8}\)
1, Có M (P) và điểm M có tung độ là -8 nên y = -8
Thay y = -8 vào (P) ta được
-8 = -x2 = -16 x = 4
M1 = (4 ;-8) ; M2 = (-4 ;-8)
Vậy …
2, hoành độ điểm chung của (P) và (d) là nghiệm của pt :
= x + m x2 + 2x + 2m = 0 (*)
Pt (*) có ’= 12 – 2m = 1 – 2m
Để (d) cắt (P) tại 2 điểm phận biệt > 0 1 - 2m > 0
m <
m < ½ thì (d) cắt (P) tại 2 điểm phân biệt A (x1 ;y1) ; B (x2 ;y2)
Theo định lý vi-et có
Theo bài ra ta có :
(x1 + y1) . (x2 + y2) =
(x1 – )(x2 - ) = 33/4 ( do y = )
x1( 1 - 2.( 1 - ) = 33/4
x1.x2.( ) = 33/4
4m2 + 16m – 33 = 0
Có = 82 -4.(-33) = 196 > 0
pt có 2 nghiệm phân biệt
m1 = ( loại ) ; m2 = - (t/m)
Vậy m = - là giá trị cần tìm
#ZyZy
a,thay M(\(x_m;-8\)) vào (p) ta có
-8=\(\dfrac{-x^2}{2}\)\(\Leftrightarrow\)x=\(\pm\)4
vậy có 2 điểm \(M_1\left(-4;-8\right);M_2\left(4;-8\right)\)thuộc parabol
b,hoành độ giao điểm của đường thẳng (d) và (p) là nghiệm của pt
\(\dfrac{-x^2}{2}=x+m\) \(\Delta=4-8m\)
(d) và (p) cắt nhau tại 2 điệm phân biệt \(\Leftrightarrow\)\(\Delta\)>0hay m<\(\dfrac{1}{2}\)
với m<\(\dfrac{1}{2}\)pt trên có 2 nghiêm pb sau đó bạn tính \(x_1;x_2theo\) m hoặc tính theo vi ét sau đó tính \(y_1;y_2\)
để thay vào điều kiện (\(x_1+y_1\))(\(x_2+y_2\))=\(\dfrac{33}{4}\)rồi đối chiếu điều kiện và kết luận
Pt hoành độ giao điểm: \(\frac{1}{2}x^2=mx+2\Leftrightarrow x^2-2mx-4=0\)
\(x_1x_2=-4< 0\Rightarrow x_1;x_2\) trái dấu
Mà \(\left|x_1\right|=4\left|x_2\right|\Rightarrow x_1=-4x_2\)
Kết hợp Viet ta được: \(\left\{{}\begin{matrix}x_1x_2=-4\\x_1=-4x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-4x_2^2=-4\\x_1=-4x_2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x_1=-4;x_2=1\\x_1=4;x_2=-1\end{matrix}\right.\)
Mà \(x_1+x_2=2m\Rightarrow m=\frac{x_1+x_2}{2}\Rightarrow\left[{}\begin{matrix}m=-\frac{3}{2}\\m=\frac{3}{2}\end{matrix}\right.\)
Xét phương trình hoành độ giao điểm của d 1 v à d 2 ta được:
x – 1 = 2 – 3 x ⇔ 4 x = 3 ⇒ x = 3 4
Thay x = 3 4 vào phương trình đường thẳng d 1 : y = x – 1 ta được:
y = 3 4 − 1 = − 1 4
Đáp án cần chọn là: D