Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M = x3 + x2y - 2x2 - xy - y2 +3y + x + 2017
= x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019
thay x + y - 2 = 0 vào M ta có : M = x2.0 - y.0 + 0 + 2019
= 2019
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)
Thay \(x+y-2=0\)vào đa thức ta được:
\(M=0.\left(x^2-y+1\right)+2019=2019\)
Tính \(\frac{-1}{2}xy^3.3x^3y=\frac{-3}{2}.x^4.y^4\le0\)
Hai đơn thức không thể cùng giá trị dương
\(\frac{-1}{2}\)\(xy^3\). 3\(x^3\) y=\(\frac{-3}{2}\) .\(x^4\) .\(y^4\) <0
hai đơn thức ko thể cùng giá trị dương
\(\left(-\dfrac{1}{3}\right)xy^2z\cdot\left(-\dfrac{3}{5}\right)x^3y^6z=\dfrac{1}{5}x^4y^8z^2>0\)
Do đó: Đây là hai số cùng dấu