Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Có AC=2DC (gt)
CB= 2CE (gt)
=>AC+CB=2DC+2CE=AB=12cm
=>2(DC + CE ) =12(cm)
=> DC + CE= DE= 12/2=6 (cm)
I là trung điểm DE (gt)
=> DI = IE = DE/2= 6/2=3 (cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
![](https://rs.olm.vn/images/avt/0.png?1311)
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
![](https://rs.olm.vn/images/avt/0.png?1311)
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có S(OMC) = 1/8 S(ABCD) = 1/8 ; S(OBC) = 1/4 S(ABCD) = 1/4
=> S(OMC)/S(OBC) = 1/8 : 1/4 = 1/2
Mà hai tam giác có chung cạnh OC => Đường cao hạ từ M xuống OC bằng 1/2 đường cao hạ từ B xuống MC
=> S(MQC) = 1/2 S(QMC) (*)
Ta có S(MCB) = 1/4 S(ABCD) = 1/4
=> S(MQC) + S(QMC) = S(MCB) = 1/4 (**)
Từ (*) và (**) suy ra S(MQC) = 1/4 : 3 = 1/12
Do tính chất đối xứng, S(MPD) = 1/12
=> S(MPOQ) = S(ODC) - S(MQC) - S(MPD) = 1/4 - 1/12 - 1/12 = 1/12
Đáp số: 1/12
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Gọi E là điểm đối xứng của A qua J, suy ra AC = DE.
Khi đó AC+BD = DE+BD > BE hơn nữa BE=2IJ (do IJ là đường trung bình của tam giác ABE)
Vậy AC+BC > 2IJ