Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác AIB và tam giác CID có:
AI=IC (GT)
góc AIB= góc CID (2 góc đối đỉnh)
BI=ID (GT)
suy ra tam giác AIB và tam giác CID (CGC)
suy ra góc BAC = góc ACD (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
suy ra AB//CD
b) xét tam giác AID và tam giác CIB có:
IA=IC (GT)
góc AID = góc BIC (2 góc so le trong)
IB=ID (GT)
suy ra tam giác AID= tam giác CIB (CGC)
suy ra góc ADB= góc DBC (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
suy ra AD//CD
c) vì tam giác AID = tam giác CIB (CMT)
suy ra AD=BC (2 góc tương ứng)
2.Trên tia AB lấy M sao cho AM = AC mà AC < AB nên AM < AB => M nằm giữa A,B
ΔAEC,ΔAEMcó AE chung ; AC = AM ;^CAE=^MAE(AE là phân giác góc BAC)
⇒ΔAEC=ΔAEM(c.g.c)=> EC = EM
=> EB - EC = EB - EM < MB (bđt tam giác đối vớiΔEMB) mà AB - AC = AB - AM = MB
Vậy AB - AC > EB - EC
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AD//BC; AC//BD
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC//BD; AD//BC
a: Xét tứ giác ACBD có
O là trung điểm của đường chéo AB
O là trung điểm của đường chéo CD
Do đó: ACBD là hình bình hành
Suy ra: AC//DB và AC=DB
b: Ta có: ACBD là hình bình hành
nên AD//CB và AD=CB