Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hoành độ M là a, do M thuộc \(\Delta\Rightarrow y_M=4-2a\Rightarrow M\left(a;4-2a\right)\)
\(\Rightarrow\overrightarrow{OM}=\left(a;4-2a\right)\) ; \(\overrightarrow{OA}=\left(1;-2\right)\)
\(\Rightarrow2\overrightarrow{OM}-\overrightarrow{OA}=2\left(a;4-2a\right)-\left(1;-2\right)=\left(2a-1;10-4a\right)\)
\(\Rightarrow\left|2\overrightarrow{OM}-\overrightarrow{OA}\right|=A=\sqrt{\left(2a-1\right)^2+\left(10-4a\right)^2}\)
\(\Rightarrow A=\sqrt{20a^2-84a+101}=\sqrt{20\left(a-\dfrac{21}{10}\right)^2+\dfrac{384}{5}}\ge\sqrt{\dfrac{384}{5}}\)
\(\Rightarrow A_{min}=\sqrt{\dfrac{384}{5}}\) khi \(a=\dfrac{21}{10}\)
\(\Rightarrow M\left(\dfrac{21}{10};\dfrac{-1}{5}\right)\)
Đường thẳng \(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtpt
Gọi d là đường thẳng qua B và vuông góc \(\Delta\Rightarrow d\) nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow x+2y-8=0\)
Gọi C là giao điểm d và \(\Delta\Rightarrow\left\{{}\begin{matrix}2x-y+3=0\\x+2y-8=0\end{matrix}\right.\) \(\Rightarrow C\left(\frac{2}{5};\frac{19}{5}\right)\)
A đối xứng B qua \(\Delta\Leftrightarrow C\) là trung điểm AB
\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_C-x_B=-\frac{6}{5}\\y_A=2y_C-y_B=\frac{23}{5}\end{matrix}\right.\) \(\Rightarrow C\left(-\frac{6}{5};\frac{23}{5}\right)\)
Thay tọa độ P; Q vào pt delta được 2 giá trị trái dấu
\(\Rightarrow P;Q\) nằm về 2 phía so với delta
\(\Rightarrow MP+MQ\le PQ\)
Dấu "=" xảy ra M;P;Q thẳng hàng hay M là giao điểm của đường thẳng PQ và delta
\(\overrightarrow{PQ}=\left(-9;-3\right)\Rightarrow\) đường thẳng PQ nhận (1;-3) là 1 vtpt
Phương trình PQ:
\(1\left(x-6\right)-3\left(y-1\right)=0\Leftrightarrow x-3y-3=0\)
Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x-3y-3=0\end{matrix}\right.\)
\(\Rightarrow M\left(0;-1\right)\)
Tọa độ điểm A, B là nghiệm của hệ phương trình :
\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\) \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)
\(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)
Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC
Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)
\(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)
Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)
Phương trình tổng quát \(\Delta\):
\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0
a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)
Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5
<=> \(5y^2-18y-8=0\)
<=>y=4 và y=\(\dfrac{-2}{5}\)
Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))
b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0
Ta có hệ phương trình:
\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)
\(\begin{cases} x=-2\\ y=1 \end{cases}\)
=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d
c. Nhận thấy, điểm A\(\notin\)\(\Delta\)
Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)
Vì M\(\in\Delta\)=> M(2y-4;y)
Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)là \(\overrightarrow{u}\)(2;1)
\(\overrightarrow{AM}\) (2y-4;y-1)
Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)
<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)
<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0
<=> 2(2y-4)+(y-1)=0
<=> 5y-9=0
<=> y= \(\dfrac{9}{5}\)
=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))
Ta nhận thấy A và B nằm cùng phía với Δ
a. M ∈ Δ => M(m ; -1 - 2m)
=> \(\overrightarrow{MA}\) = ( -m ; 4 + 2m) ; \(\overrightarrow{AB}\) = (1 ; 2)
Ta có : \(\left|MA-MB\right|\le AB\)
Dấu "=" xảy ra ⇔ A, M, B thẳng hàng
⇔ -m = \(\frac{4+2m}{2}\) ⇔ m = -1 => M ( -1 ; 1)
b. N ∈ Δ => N(n ; -1 - 2n)
Qua Δ lấy B' đối xứng với B => B' (\(\frac{-27}{5};\frac{9}{5}\))
=> \(\overrightarrow{B'A}\) = (\(\frac{27}{5};\frac{6}{5}\)) ; \(\overrightarrow{AN}\) = (n ; - 4 - 2n)
Mặt khác: NA + NB = NA + NB' ≥ AB'
Dấu "=" xảy ra ⇔ N, A, B' thẳng hàng
⇔ \(\frac{\frac{27}{5}}{n}=\frac{\frac{6}{5}}{-4-2n}\) ⇔ n = \(\frac{-9}{5}\) => N(\(\frac{-9}{5};\frac{13}{5}\))
+câu a:+ gọi d là đường thẳng qua O vuông góc với \(\Delta\): pt d :x+y+m=0 , O(00) \(\in d\Rightarrow m=0\). vậy pt d :x+y =0
+giao điểm H của d và \(\Delta\) thỏa \(\left\{{}\begin{matrix}x-y+2=0\\x+y=0\end{matrix}\right.\Rightarrow H\left(-1;1\right)\)
+goi O' la diem doi xung voi O qua d \(\Rightarrow\)H là trung điểm OO'
\(\Rightarrow O'\left(-2;2\right)\)
câu b : goi M (a;b) \(\in\Delta\Rightarrow M\left(a;a+2\right)\)
+ O' doi xung O qua \(\Delta\) nen MO = MO'.
+ OM+MA=O'M+MA\(\ge OA\) dấu bằng xảy ra khi O',M,A thang hang \(\Leftrightarrow\overrightarrow{O'M}\)cùng phương với \(\overrightarrow{O'A}\)
+ \(\overrightarrow{O'M}=\left(a+2;a\right);\overrightarrow{O'A}=\left(4;-2\right)\)
\(\Rightarrow\dfrac{a+2}{4}=\dfrac{a}{-2}\Rightarrow a=\dfrac{-2}{3}\Rightarrow M\left(\dfrac{-2}{3};\dfrac{4}{3}\right)\)