Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C M K I N H
Gọi H chân đường vuông góc kẻ từ M đến cạnh AB.
N là điểm nằm trên tia đối của IK sao cho IK=IN.
Ta thấy ngay: \(\Delta\)MIK=\(\Delta\)BIN (c.g.c) => MK=BN (2 cạnh tương ứng) (1)
Ta có: ^KCM + ^ACB = 900 ; ^HMB + ^ABC = ^KMC + ^ABC = 900 (Vì \(\Delta\)BHM vuông tại H)
Lại có: ^ABC=^ACB => ^KCM = ^KMC => \(\Delta\)MKC cân đỉnh K => MK=CK (2)
Từ (1) và (2) => CK=BN
Do \(\Delta\)MIK=\(\Delta\)BIN (cmt) => ^IKM=^INB => MK//BN (2 góc so le trg bằng nhau)
Mà MK vuông góc AB tại H => BN vuông góc AB hay ^ABN=900
Xét \(\Delta\)ACK và \(\Delta\)ABN: AC=AB; ^ACK=^ABN=900; CK=BN (cmt)
=> \(\Delta\)ACK=\(\Delta\)ABN (c.g.c) => AK=AN (2 cạnh tương ứng)
=> \(\Delta\)NAK cân đỉnh A. Mà I là trung điểm NK
=> AI là đường cao \(\Delta\)NAK. Hay AI vuông góc IK (đpcm).

a) Vì d là đường trug trực của AB mà C,D thuộc d nên: AC=BC =>tam giác ACB cân tại C=> Góc CAB= góc CBA (1)
AD=BD=>tam giácABD cân tại D=> Góc DAB= góc DBA (2)
TỪ (1) và
A D M B C O
Kẻ \(MO\perp AD\text{ }\left(O\in AD\right)\)
Ta có: OM là đường vuông góc; MA, MB, MC, MD là các đường xiên (lớn nhất là \(MA\) hay \(MD\))
Ta luôn có: \(OM\le MB\le MA\) hoặc \(OM\le MB\le MD\)
\(OM\le MC\le MA\) hoặc \(OM\le MC\le MD\)
Có 3 khả năng: \(MB+MC\le MA+MD\) (Dấu bằng xảy ra khi \(B\equiv A,\text{ }C\equiv D\text{}\text{}\text{}\) hoặc \(B\equiv D,\text{ }C\equiv A\))
\(MB+MC\le2MA\) (Dấu bằng xảy ra khi \(A\equiv B\equiv C\))
\(MB+MC\le2MD\)(Dấu bằng xảy ra khi \(D\equiv B\equiv C\))
Tuỳ thuộc vào vị trí của M mà chứng minh. Bất đẳng thức trên có thể không đúng với mọi vị trí của M.