\(\ne\)x2; y1\(\ne\)y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2020

Đây bạn nhé

9 tháng 6 2020

Sao ko đăng đc ảnh lên nhỉ?

NV
20 tháng 5 2019

a/ Đương nhiên là bạn tự vẽ

b/ Phương trình hoành độ giao điểm:

\(\frac{1}{2}x^2=\frac{1}{4}x+\frac{3}{2}\Leftrightarrow2x^2-x-6=0\Rightarrow\left[{}\begin{matrix}x_1=2\Rightarrow y_1=2\\x_2=-\frac{3}{2}\Rightarrow y_2=\frac{9}{8}\end{matrix}\right.\)

\(\Rightarrow T=\frac{2-\frac{3}{2}}{2+\frac{9}{8}}=\frac{4}{25}\)

20 tháng 5 2019

Hỏi đáp Toán

6 tháng 4 2019

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\end{cases}}\)

Ta có \(S=y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}\)

                                                                           \(=-\frac{5}{3}+\frac{\frac{-5}{3}}{-2}=-\frac{5}{6}\)

       \(P=x_1x_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=-\frac{1}{2}\)

Khi đó y1 ; y2 là nghiệm của pt

\(Y^2-SY+P=0\) 

\(\Leftrightarrow Y^2+\frac{5}{6}Y-\frac{1}{2}=0\)

15 tháng 2 2019

mk viết nhầm : (P) \(y=-x^2\)

15 tháng 2 2019

Bài này tớ nghĩ y = x đúng hơn là y = -x2 đấy vì y = x2 sẽ có Amin còn y = -x2 sẽ tìm luôn đc A , xem nhé

Hoành độ giao điểm của (d) và (P) là nghiệm của pt : 

\(-x^2=2x-m+4\)

\(\Leftrightarrow x^2+2x-m+4=0\)

Pt có nghiệm khi \(\Delta'\ge0\)

             \(\Leftrightarrow1+m-4\ge0\)

             \(\Leftrightarrow m\ge3\)

Xét điểm \(A\left(x_1;y_1\right)\in\left(P\right)\Rightarrow y_1=-x_1^2\)

Xét điểm \(B\left(x_2;y_2\right)\in\left(P\right)\Rightarrow y_2=-x_2^2\)

Khi đó \(A=x_1^2-x_1^2+x_2^2-x_2^2=0\)