K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

Gọi A' đối xứng A qua a

Nối A'B cắt a tại M thì \(AM+MB\) bé nhất

Giải thích:

Vì A' đx A qua a nên \(AM=A'M\)

Do đó \(AM+BM=A'M+BM\)

Để tổng trên nhỏ nhất thì 3 điểm A',M,B thẳng hàng hay A'B cắt a tại M

- Tìm điểm A’ đối xứng với A qua d

- Nối A’B cắt d tại M. M chính là điểm cần tìm.

- Thật vậy : Vì A’ đối xứng với A qua d cho nên MA=MA’. Do đó : MA+MB=MA’+MB=A’B .

- Giả sử tồn tại M’ khác M thuộc d thì : M’A+M’B=M’A’+M’B lớn hơn hoặc bằng A'B. Dấu bằng chỉ xảy ra khi A’M’B thẳng hàng. Nghĩa là M trùng với M’ 

22 tháng 8 2019

bạn phk tự vẽ hình ra chứ

Cách giải​
  • Bước 1: Tìm điẻm A’ đối xứng với A qua đường thẳng d
  • Bước 2: Nối A’B , đường thẳng này cắt d tại M . Là điểm cần tìm
  • Bước 3: Chứng minh M là điểm duy nhất .

 Study well 

21 tháng 3 2018

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).

Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.

Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )

Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d

Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d

18 tháng 1 2019

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Vẽ điểm C đối xứng với B qua đường thẳng d, giả sử tìm được điểm M trên d thì MB = MC ( 1 ).

Do A, B, d cố định nên C cũng cố định suy ra độ dài đoạn AC không đổi.

Áp dụng bất đẳng thức tam giác ta có vào Δ AMC ta được: MA + MC ≥ AC ( 2 )

Dấu bằng xảy ra khi M nằm giữa A và C hay M là giao điểm của AC và đường thẳng d

Từ ( 1 ) và ( 2 ) suy ra MA + MB nhỏ nhất bằng AC khi M là giao điểm của AC và đường thẳng d