Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\)
Vậy bất kì điểm M nào nằm trên mặt phẳng cũng thỏa mãn:
\(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\).
b) Do \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{BM}=\overrightarrow{BA}\) nên không tồn tại điểm M thỏa mãn: \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\).
c) \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}\) nên M là trung điểm của AB.
a,, CÓ \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BA}\Leftrightarrow\overrightarrow{BA}=\overrightarrow{BA}\)
Vậy với mọi điểm M thì đều thõa mãn
b, có \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{AB}\Leftrightarrow\overrightarrow{BA}=\overrightarrow{AB}\) ( không thõa mãn)
vậy không có điểm M nào thõa mãn điều kện trên
c, có \(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{O}\) \(\Rightarrow\) M là trung điểm của AB
2) ∣ MG+ GA+ MG+ GB+ MG+ GC∣=∣BA∣
∣3MG∣= ∣BA∣
∣MG∣=1/3∣BA∣
=> M thuộc đường tròn tâm G, bán kính = 1/3BA
Dựng hình bình hành ABDC \(\Rightarrow\overrightarrow{AB}=-\overrightarrow{DC}\) ; \(\overrightarrow{AC}=-\overrightarrow{DB}\)
a/
\(\left|\overrightarrow{MC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\Leftrightarrow\left|\overrightarrow{MD}+\overrightarrow{DC}+\overrightarrow{AB}\right|=\left|\overrightarrow{MA}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MD}\right|=\left|\overrightarrow{MA}\right|\)
\(\Rightarrow\) Tập hợp M là trung trực của đoạn thẳng AD
b/ \(\left|\overrightarrow{MA}+\overrightarrow{AC}\right|=\left|\overrightarrow{MA}+\overrightarrow{AB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MB}+\overrightarrow{AC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{AC}\right|\Leftrightarrow\left|\overrightarrow{MC}\right|=\left|\overrightarrow{MD}\right|\)
Tập hợp M là trung trực đoạn CD
c/Dựng hình bình hành AEBC \(\Rightarrow\overrightarrow{EB}=-\overrightarrow{CA}\)
\(\left|\overrightarrow{MB}+\overrightarrow{CA}\right|=\left|\overrightarrow{MC}+\overrightarrow{BM}\right|\Leftrightarrow\left|\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{ME}\right|=\left|\overrightarrow{BC}\right|\)
Tập hợp M là đường tròn tâm E bán kính BC
a) Ta có \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\overrightarrow{MA}+\overrightarrow{BC}\) = \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}\)
⇒\(\left|\overrightarrow{MG}\right|=\left|\overrightarrow{BA}\right|\)
⇒ M là điểm trên đường tròn tâm G bk là AB
a) gọi I là trung điểm của đoạn thẳng AB
=> IA+ IB=0
| 2MI|= |BA|
|MI|= 1/2|BA|
=> M thuộc đường tròn tâm I, bán kính =1/2 BA
B) gọi G là trọng tâm của tam giác ABC
=> GA+ GB+ GC=0
gọi I là trung điểm của đoạn thẳng AB
=> IA+ IB=0
| 3MG|= 3/2| 2 MI|
3| MG|= 3| MI|
| MG|= | MI|
=> M thuộc đường trung trực của đoạn thẳng GI
\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}\right|=\left|\overrightarrow{BA}\right|=BA\).
Áp dụng tính chất trung điểm:
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|2\overrightarrow{MO}\right|=2MO\) (với O là trung điểm của AB).
Suy ra: \(AB=2OM\Rightarrow OM=\dfrac{1}{2}AB\).