Cho hai điểm A, B
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

Đoạn thẳng AB cắt đường thẳng xy tại một điểm M nằm giữa AB.

Lấy điểm O thuộc tia My thì tia Ox nằm giữa hai tia OA,OB.

a) \(B=3+3^2+3^3+...+3^{120}\)

\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)

\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)

Suy ra B chia hết cho 3 (đpcm)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)

\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)

\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)

\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)

Suy ra B chia hết cho 4 (đpcm)

c) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)

\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)

\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)

\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)

Suy ra B chia hết cho 13 (đpcm)