K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Cách em làm đúng:)

Tuy nhiên nếu em học đường trung trực thì bài này có thể làm:

Ta có: A đối xứng với C qua đường thẳng d 

=> d là đường trung trực của đoạn thẳng AC.

Do \(D\in d\Rightarrow DA=DC\)

Do \(E\in d\Rightarrow EA=EC\)

=> \(AD+DB=CD+BD=BC< BE+CE=BE+AE\)

=> Điều phải chứng minh.

Ngắn hơn đúng không :)

10 tháng 10 2019

Nguyễn Linh Chi à đúng rồi! THầy em bảo dùng t/c đối xứng để làm:))

20 tháng 9 2018

Giải bài 39 trang 88 Toán 8 Tập 1 | Giải bài tập Toán 8

a) + A và C đối xứng qua d

⇒ d là trung trực của AC

⇒ AD = CD

⇒ AD + DB = CD + DB = CB (1)

+ E ∈ d ⇒ AE = CE

⇒ AE + EB = CE + EB (2)

+ CB < CE + EB (3)

Từ (1), (2), (3) ⇒ AD + DB < AE + EB

b) Vì với mọi E ∈ d thì AE + EB > AD + DB

Do đó con đường ngắn nhất bạn Tú nên đi là đường ADB.

15 tháng 10 2016

Bài giải:        

a) Ta có AD = CD

nên AD + DB = CD  + DB = CB      (1)                                     

và AE = CE                              

  nên AE + EB = CE + EB               (2)

mà CB < CE + EB                           (3)

Nên từ (1) (2) và (3), suy ra

AD + DB < AE + EB

b) Theo câu a con đường ngắn nhất mà bạn Tú phải đi là con đường ADB.

 

21 tháng 4 2017

Bài giải:

a) Ta có AD = CD

nên AD + DB = CD + DB = CB (1)

và AE = CE

nên AE + EB = CE + EB (2)

mà CB < CE + EB (3)

Nên từ (1) (2) và (3), suy ra

AD + DB < AE + EB

b) Theo câu a con đường ngắn nhất mà bạn Tú phải đi là con đường ADB

28 tháng 6 2018

Bài giải:

a) Ta có AD = CD

nên AD + DB = CD + DB = CB (1)

và AE = CE

nên AE + EB = CE + EB (2)

mà CB < CE + EB (3)

Nên từ (1) (2) và (3), suy ra

AD + DB < AE + EB

b) Theo câu a con đường ngắn nhất mà bạn Tú phải đi là con đường ADB.

25 tháng 9 2016

C đối xứng với A qua d => d là trung trực của AC

D; E thuộc d => EA = EC và DA = DC

ta có : AD + DB = DC + DB = CB

AE + EB = EC + EB

Trong tam giác BEC có: BC < EC + EB => AD + BD < AE + BE

b﴿ Giả sử bạn Tú đến điểm E bất kì trên d

ta có: Quãng đường bạn cần đi là AE + EB

mà AE + EB = CE + EB

ta luôn có: CE + EB ≥ CB

đê đi gần nhất thì CE + EB nhỏ nhất = CB

Dấu "=" xảy ra khi E trùng với D

vậy.... 

25 tháng 9 2016

k minhf nha

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC