K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

mk rút gọn P(x) vs Q(x) luôn nha, k ghi lại đề nx!

___ P(x) = 5x2 - 4x + 7

___Q(x)= -x2 - x - 5

---------------------------------

P(x)+Q(x)= 4x2 - 5x +2

Ta có: Q(x) + P(x) + 5x2 - 2 = 0

<=> 4x2 - 5x + 2 + 5x2 - 2 = 0

<=> 9x2 - 5x = 0

<=> \(x\left(9x-5\right)=0\)

<=> \(\left[{}\begin{matrix}x=0\\9x-5=0\Rightarrow x=\dfrac{5}{9}\end{matrix}\right.\)

Vậy...........................................

20 tháng 5 2022

thiếu đề bài nhé bạn

2 tháng 9 2021

a, \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

b, \(M\left(x\right)=5x^3-4x+7-5x^3-x^2+4x-5=-x^2+2\)

c, Đặt \(M\left(x\right)+2=0\Rightarrow-x^2+4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

a: \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2=-5x^3-x^2+4x-5\)

b: Ta có: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(=5x^3-4x+7-5x^3-x^2+4x-5\)

\(=-x^2+2\)

c: Đặt M(x)+2=0

\(\Leftrightarrow4-x^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

c:: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^5+7x^4+4x^2-x-14\)

d: \(M\left(2\right)=32+7\cdot16+4\cdot4-2-14=144\)

\(M\left(-2\right)=-32+7\cdot16+4\cdot4+2-14=84\)

a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b: Hệ số cao nhất của P(x) là 1

Hệ số tự do của P(x) là 0

20 tháng 5 2022

`a)`

`@P(x)=x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4`

   `P(x)=x^5+(7x^4-5x^4)-9x^3-(2x^2-2x^2)-x`

  `P(x)=x^5+2x^4-9x^3-x`

`@Q(x)=5x^4-x^5+4x^2-6+9x^3-8+x^5`

   `Q(x)=(-x^5+x^5)+5x^4+9x^3+4x^2-(6+8)`

   `Q(x)=5x^4+9x^3+4x^2-14`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)` Đa thức `P(x)` có:

  `@` Hệ số cao nhất: `1`

  `@` Hệ số tự do: `0`

12 tháng 4 2019

1. Ta có \(|3x-1|=\frac{1}{2}\)

\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)

Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha

Sai thì thôi nha bn mik cx chưa lm dạng này bh

13 tháng 4 2019

Câu 1:

\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)

\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)

\(=x^2+9x+1\)

Ta có: \(\left|3x-1\right|=\frac{1}{2}\)

TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)

\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)

TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)

\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)

20 tháng 5 2022

a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)

\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)

b) Sửa  Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)

 hệ số cao nhất :9

 hệ số tự do  :- 14

c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)

\(M\left(x\right)=x^5+6x^4-x-14\)

20 tháng 5 2022

d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)

\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)

\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)

9 tháng 3 2023

a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)

M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)

M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6

M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6

b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6

P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8 

Sửa đa thức M(x) = 3x4 - 2x3 + 5x2 - 4x + 1

\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=3x^4-2x^3+5x^2-4x+1-3x^4+2x^3-3x^2+7x+5\)

\(=2x^2+3x+6\)

b, Tại x = -x  

< = > 2x = 0 <=> x = 0 thì giá trị của biểu thức P ( x ) = 6