Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
a) Q(x) = (3x-x^2-7+x^3) - (x^3+3x-2x^2-5) = (3x-3x) - (x^2-2x^2)+(x^3-x^3)-(7-5) = 0 - x^2 + 0 - 2 = - x^2 - 2
a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)
a/ P(x) = x2 + 3x + 2 - x = x2 + 2x + 2
Q(x) = -2x3 + 2x2 - x - 5 + 2x3 = 2x2 - x - 5
b/ Q(-1) = 2 . (-1)2 - (-1) - 5
= 2 + 1 - 5 = -2
c/ P(x) = x2 + 2x + 2 = x2 + 2x + 1 + 1
= (x + 1)2 + 1. Dễ thấy:
(x + 1)2 \(\ge0\forall x\) => (x + 1)2 + 1 > 0
=> P(x) vô no (đpcm)
a)
\(P\left(x\right)=x^2+3x+2-x\)
\(P\left(x\right)=\left(3x-x\right)+x^2+2\)
\(P\left(x\right)=2x+x^2+2\)
\(Q\left(x\right)=-2x^3+2x^2-x-5+2x^3\)
\(Q\left(x\right)=\left(-2x^3+2x^3\right)+2x^2-x-5\)
\(Q\left(x\right)=2x^2-x-5\)
b)
Tại x = -1 thì đa thức Q(x) đạt giá trị là:
\(Q\left(-1\right)=2.\left(1\right)^2-\left(-1\right)-5\)
\(Q\left(-1\right)=2.1+1-5=2+1-5=-2\)
c)
Có: \(P\left(x\right)=2x+x^2+2\)
Hay \(P\left(x\right)=x^2+2x+2\)
\(P\left(x\right)=x^2+x+x+1+1\)
\(P\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+1\)
\(P\left(x\right)=x.\left(x+1\right)+1.\left(x+1\right)+1\)
\(P\left(x\right)=\left(x+1\right).\left(x+1\right)+1\)
\(P\left(x\right)=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy đa thức P(x) không có nghiệm.
Chúc bạn học tốt!
1a)\(M=-2x^3+2x^2y\)
b) \(M=6x^2+xy-x^3+4y^2\)
2a)\(P\left(x\right)+Q\left(x\right)=2x^2-2x\)
\(P\left(x\right)-Q\left(x\right)=4x^2+8x-4\)
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a: P(1)=2-3-4=-5
b: \(P\left(x\right)+Q\left(x\right)=3x^2-6x+1\)
\(P\left(x\right)-Q\left(x\right)=x^2-9\)
c: Đặt H(x)=0
=>(x-3)(x+3)=0
=>x=3 hoặc x=-3