Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)
\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)
Chứng tỏ rằng các đa thức sau ko phụ thuộc vào biến
a) Ta có: \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)
\(=6x^2+23x-55-6x^2-23x-21\)
=-74
Vậy: Đa thức A không phụ thuộc vào biến(đpcm)
b) Ta có: \(B=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=-8\)
Vậy: Đa thức B không phụ thuộc vào biến(đpcm)
c) Ta có: \(C=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)
Vậy: Đa thức C không phụ thuộc vào biến(đpcm)
d) Ta có: \(D=x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)
\(=xy+xz-xyz-yz-xy+xyz+zy-zx\)
=0
Vậy: Đa thức D không phụ thuộc vào biến(đpcm)
a, \(3x^2-11x+6=3x^2-9x-2x+6\)
\(=3x.\left(x-3\right)-2.\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)
b, \(8x^2-2x-1=8x^2-4x+2x-1\)
\(=4x.\left(2x-1\right)+\left(2x-1\right)=\left(2x-1\right)\left(4x+1\right)\)
c, \(6x^2+7xy+2y^2=6x^2+3xy+4xy+2y^2\)
\(=3x.\left(2x+y\right)+2y.\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
d, \(2x^3-x^2+5x+3=2x^3+x^2-2x^2-x+6x+3\)
\(=x^2.\left(2x+1\right)-x.\left(2x+1\right)+3.\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
e, \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=xy.\left(x+y\right)+x^2z+xyz+xz^2+xyz+yz.\left(y+z\right)\)
\(=xy\left(x+y\right)+xz\left(x+y\right)+xz\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(x+y\right)\left(xy+xz\right)+\left(y+z\right)\left(xz+yz\right)\)
\(=x\left(x+y\right)\left(y+z\right)+z\left(y+z\right)\left(x+y\right)\)
\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
Chúc bạn học tốt!!!
Bài 4:
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
=>3x=42
hay x=14
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>-2x+8=0
=>-2x=-8
hay x=4
c: \(x\left(x-2\right)+\left(x-2\right)=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
d: \(5x\left(x-3\right)-x+3=0\)
=>5x(x-3)-(x-3)=0
=>(x-3)(5x-1)=0
=>x=3 hoặc x=1/5
e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)
\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)
=>-14x=28
hay x=-2
f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)
=>x+2=0
hay x=-2
a) đề x3+x2-x +a chia hét cho (x-1)2 ?
x3+x2-x +a=x(x2-2x+1)+3(x2-2x+1)+4x-3+a đề sai nhé
b)A(2)=0=> 8-12+10+m=0 => m=6
c)2n2-n+2=2n(n+1)-3(n+1) +5 chia het cho n+1 khi n+1 là ước của 5
n+1=-1;1;-5;5
n=-2;0;-6;4
a)
\(\begin{array}{l}A - C = B\\ \Rightarrow C = A - B \\= 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - \left( {7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2} \right)\\ = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - 7{x^2}yz + 5x{y^2}z - 3xy{z^2} + 2\\ = \left( {7xy{z^2} - 3xy{z^2}} \right) + \left( { - 5x{y^2}z + 5x{y^2}z} \right) + \left( {3{x^2}yz - 7{x^2}yz} \right) - xyz + \left( {1 + 2} \right)\\ = 4xy{z^2} - 4{x^2}yz - xyz + 3\end{array}\)
b)
\(\begin{array}{l}A + D = B\\ \Rightarrow D = B - A \\= - \left( {A - B} \right) = - C \\= - 4xy{z^2} + 4{x^2}yz + xyz - 3.\end{array}\)
c)
\(\begin{array}{l}E - A = B\\ \Rightarrow E = A + B = A \\= 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 + 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2\\ = \left( {7xy{z^2} + 3xy{z^2}} \right) + \left( { - 5x{y^2}z - 5x{y^2}z} \right) + \left( {3{x^2}yz + 7{x^2}yz} \right) - xyz + \left( {1 - 2} \right)\\ = 10xy{z^2} - 10x{y^2}z + 10{x^2}yz - xyz - 1\end{array}\)