Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x
=x^5+7x^4−9x^3−3x^2+x^2−1/4x
=x^5+7x^4−9x^3−2x^2−1/4x
Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4
=−x^5+5x^4−2x^3+x^2+3x^2−1/4
=−x^5+5x^4−2x^3+4x^2−1/4
b)
P(x)+Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4
=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4
=12x^4−11x^3+2x^2−1/4x−1/4
P(x)−Q(x)
=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)
=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4
=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4
=2x5+2x4−7x3−6x2−1/4x−1/4
c) Ta có
P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0
⇒x=0là nghiệm của P(x).
Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0
⇒x=0không phải là nghiệm của Q(x).
Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến
f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)
f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9
+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9
g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9
+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9
c) Tính f(x) + g(x); f(x) - g(x)
f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )
= 3x2 + x
f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9
= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )
= -2x5 - 14x4 - 2x3 -x2 + 7x + 18
a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9
g(x)=x^5+7x^4+2x^3+2x^2-3x-9
b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9
=3x^2+x
c: H(x)=0
=>x(3x+1)=0
=>x=0 hoặc x=-1/3
b)
Sửa đề: f(x)=A(x)+B(x)
Ta có: f(x)=A(x)+B(x)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
a) Ta có: \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Ta có: \(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
a: \(C\left(x\right)=x^3+3x^2-x+6\)
\(D\left(x\right)=-x^3-2x^2+2x-6\)
b: Bậc của C(x) là 3
Hệ số tự do của D(x) là -6
c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)
d: \(C\left(x\right)+D\left(x\right)=x^2+x\)
a.
b. Bậc của C(x) là 3
Hệ số tự do của D(x) là -6
c.
d.
`#Namnam041005`
`a)`
`A(x) =`\(x^5+ x^3- 4x - x^5 + 3x - x^2 + 7\)
`= (x^5 - x^5) + x^3 - x^2 + (-4x + 3x) + 7`
`= x^3 - x^2 - x + 7`
`B(x) = `\(3x^2 - x^5 + 5x - 2x^2 - 9\)
`= (3x^2 - 2x^2) - x^5 + 5x - 9`
`= -x^5 + x^2 + 5x - 9`
`b)`
`A(x)``= x^3 - x^2 - x + 7`
Bậc của đa thức: `3`
Hệ số cao nhất: `1`
Hệ số tự do: `7`
`c)`
`A(x) + B(x) = x^3 - x^2 - x + 7 -x^5 + x^2 + 5x - 9`
`= -x^5 + x^3 + (-x^2 + x^2) + (-x+5x) + (7-9)`
`= -x^5 + x^3 + 4x - 2`
`A(x) - B(x) = x^3 - x^2 - x + 7 - (-x^5 + x^2 + 5x - 9)`
`= x^3 - x^2 - x + 7 +x^5 - x^2 - 5x + 9`
`= x^5 + x^3 + (-x^2 - x^2) + (-x-5x) + (7+9)`
`= x^5 + x^3 - 2x^2 - 6x + 16`
___
`A(x) + B(x) = -x^5 + x^3 + 4x - 2=0`
Bạn xem lại đề
`d)`
`H(x) - B(x) = x^3 + x^2 - x + 1`
`=> H(x) = (x^3 + x^2 - x + 1) + B(x)`
`=> H(x) = x^3 + x^2 - x + 1 -x^5 + x^2 + 5x - 9`
`= -x^5 + x^3 + (x^2 + x^2) + (-x+5x) + (1 - 9)`
`= -x^5 + x^3 + 2x^2 + 4x - 8`
a: A(x)=x^5-x^5+x^3-x^2-4x+3x+7
=x^3-x^2-x+7
B(x)=-x^5+3x^2-2x^2+5x-9
=-x^5+x^2+5x-9
b: Bậc: 3
Hệ số cao nhất: 1
hệ số tự do: 7
c: A(x)+B(x)
=x^3-x^2-x+7-x^5+x^2+5x-9
=-x^5+x^3+4x-2
A(x)-B(x)
=x^3-x^2-x+7+x^5-x^2-5x+9
=x^5+x^3-2x^2-6x+16
d: H(x)=x^3+x^2-x+1+B(x)
=x^3+x^2-x+1-x^5+x^2+5x-9
=-x^5+x^3+2x^2+4x-8
a) \(x^5-3x^2+x^4-4x-x^5+5x^4+x^2-1\)
\(=\left(x^5-x^5\right)+\left(-3x^2+x^2\right)+\left(x^4+5x^4\right)-4x-1\)
\(=-2x^2+6x^4-4x-1\)
\(=6x^4-2x^2-4x-1\)
- Hệ số tự do: \(-1\)
- Hệ số cao nhất: \(6\)
b) \(x-x^9+x^2-5x^3+x^6-x+3x^9+2x^6-x^3+7\)
\(=\) \((x-x)+(x^9+3x^9)+x^2+(-5x^3-x^3)+(x^6+2x^6)+7\)
\(=4x^9+x^2-6x^3+3x^6+7\)
\(=4x^9+3x^6-6x^3+x^2+7\)
- Hệ số tự do: \(7\)
- Hệ số cao nhất: \(4\)
Lời giải:
a.
$A(x)=-x^5-7x^4-2x^3+x^2+4x+9$
$B(x)=x^5+7x^4+2x^3+2x^2-3x-9$
b.
$A(x)+B(x)=(-x^5-7x^4-2x^3+x^2+4x+9)+(x^5+7x^4+2x^3+2x^2-3x-9)$
$=(-x^5+x^5)+(-7x^4+7x^4)+(-2x^3+2x^3)+(x^2+2x^2)+(4x-3x)+(9-9)=3x^2+x$
$A(x)-B(x)=(-x^5-7x^4-2x^3+x^2+4x+9)-(x^5+7x^4+2x^3+2x^2-3x-9)$
$=(-x^5-x^5)+(-7x^4-7x^4)+(-2x^3-2x^3)+(x^2-2x^2)+(4x+3x)+(9+9)=-2x^5-14x^4-4x^3-x^2+7x+18$